


Computer Vision with Python 3

Image classification, object detection, video processing, and
more

Saurabh Kapur

BIRMINGHAM - MUMBAI



Computer Vision with Python 3
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1210817

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78829-976-3

www.packtpub.com

http://www.packtpub.com


Credits

Author
Saurabh Kapur

Copy Editor
Laxmi Subramanian

Reviewer
Will Brennan

Project Coordinator
Shweta H Birwatkar

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Chandan Kumar

Indexer
Pratik Shirodkar

Content Development Editor
Deepti Thore

Graphics
Tania Dutta

Technical Editor
Sneha Hanchate

Production Coordinator
Melwyn Dsa



About the Author
Saurabh Kapur is a computer science student at Indraprastha Institute of Information
Technology, Delhi.

His interests are in computer vision, numerical analysis, and algorithm design. He often
spends time solving competitive programming questions. Saurabh also enjoys working on
IoT applications and tinkering with hardware.

He likes to spend his free time playing or watching cricket. He can be reached at
saurabhkapur96@gmail.com.



About the Reviewer
Will Brennan is a C++ and Python developer based in London, with experience of working
on high-performance image processing and machine learning applications.

You can read more about Will at https://github.com//WillBrennan.



www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt


Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788299760.

If you'd like to join our team of regular reviewers, you can e-mail us
at customerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788299760
https://www.amazon.com/dp/1788299760


Table of Contents
Preface 1

Chapter 1: Introduction to Image Processing 7

Image processing - its applications 8
Image processing libraries 10

Pillow 10
Installation 10
Getting started with pillow 11

Reading an image 11
Writing or saving an image 12
Cropping an image 12
Changing between color spaces 13
Geometrical transformation 16
Image enhancement 17

Introduction to scikit-image 19
Installation 20
Getting started with scikit-image 20

Summary 27

Chapter 2: Filters and Features 28

Image derivatives 28
Kernels 30

Convolution 30
Understanding image filters 32

Gaussian blur 33
Median filter 35
Dilation and erosion 36

Erosion 36
Dilation 37

Custom filters 39
Image thresholding 40

Edge detection 41
Sobel edge detector 41

Why have pixels with large gradient values? 42
Canny edge detector 43
Hough line 46
Hough circle 47

Summary 48



[ ]

Chapter 3: Drilling Deeper into Features - Object Detection 49

Revisiting image features 50
Harris corner detection 51
Local Binary Patterns 54
Oriented FAST and Rotated BRIEF (ORB) 57

oFAST – FAST keypoint orientation 57
FAST detector 57
Orientation by intensity centroid 57
rBRIEF – Rotation-aware BRIEF 58
Steered BRIEF 59
Variance and correlation 60

Image stitching 63
Summary 67

Chapter 4: Segmentation - Understanding Images Better 68

Introduction to segmentation 69
Contour detection 70
The Watershed algorithm 72
Superpixels 74
Normalized graph cut 76
Summary 79

Chapter 5: Integrating Machine Learning with Computer Vision 80

Introduction to machine learning 81
Data preprocessing 82

Image translation through random cropping 82
Image rotation and scaling 82

Scikit-learn  (sklearn) 83
Applications of machine learning for computer vision 83
Logistic regression 85
Support vector machines 89
K-means clustering 95
Summary 97

Chapter 6: Image Classification Using Neural Networks 98

Introduction to neural networks 99
Design of a basic neural network 99
Training a network 101
MNIST digit classification using neural networks 102
Playing with hidden layers 104

Convolutional neural networks 105



[ ]

Challenges in machine learning 109
Summary 109

Chapter 7: Introduction to Computer Vision using OpenCV 110

Installation 110
macOS 111
Windows 111
Linux 112

OpenCV APIs 112
Reading an image 112

Writing/saving the image 113
Changing the color space 113
Scaling 114
Cropping the image 115
Translation 116
Rotation 117
Thresholding 118
Filters 119

Gaussian blur 121
Median blur 121

Morphological operations 122
Erosion 122
Dilation 123

Edge detection 124
Sobel edge detection 124
Canny edge detector 126

Contour detection 126
Template matching 128

Summary 130

Chapter 8: Object Detection Using OpenCV 131

Haar Cascades 131
Integral images 132

Scale Invariant Feature Transformation (SIFT) 135
Algorithm behind SIFT 135

Scale-space extrema detection 136
Keypoint localization 139
Orientation assignment 141
Keypoint descriptor 143

Speeded up robust features 147
Detecting SURF keypoints 147
SURF keypoint descriptors 149

Orientation assignment 149
Descriptor based on Haar wavelet response 150

Summary 153



[ ]

Chapter 9: Video Processing Using OpenCV 154

Reading/writing videos 154
Reading a video 155
Writing a video 156

Basic operations on videos 157
Converting to grayscale 157

Color tracking 158
Object tracking 161

Kernelized Correlation Filter (KCF) 161
Lucas Kanade Tracker (LK Tracker) 163

Summary 165

Chapter 10: Computer Vision as a Service 166

Computer vision as a service – architecture overview 167
Environment setup 168

http-server 168
virtualenv 169
flask 169

Developing a server-client model 170
Client 170
Server 176

Computer vision engine 180
Putting it all together 183

Client 183
Server 184

Summary 184

Index 185



Preface
Computer vision has gone through significant advancements over the last few years. These
advancements have not only made a great impact of computer science but also of other
fields, such as medicine, space exploration, and defense. From microscopic organisms to
celestial particles light-years away, using computer vision techniques researchers are able to
analyze their images to make progress in these fields. Computer vision is now being used as
a tool to facilitate research and development in many other fields.

Going forward, the impact of computer vision will have an even greater impact—the most
recent application being driverless cars. To be able to be a part of this ongoing revolution, it
is important that we are able to understand and implement computer vision algorithms.
This book will introduce the reader to three computer vision libraries written for
Python—Pillow, Scikit-image, and OpenCV. Through examples and code snippets, the book
will help the reader understand the basics of image processing, morphological operations,
and eventually, complex feature detection algorithms.

What this book covers
Chapter 1, Introduction to Image Processing, as the name suggests, introduces the reader to
the basics of image processing. Starting with some common use cases of image processing,
the chapter goes on to explain how to install different image processing libraries. The next
few sections in the chapter explain how to read/write an image and perform basic image
manipulation operations.

Chapter 2, Filters and Features, gives the reader an overview of what filters and features
mean in the context of computer vision. We start with convolution, which forms the basis of
applying any filter to an image. Then we look at some common filters, such as Gaussian
Blur and Median Blur. The second half of the chapter explains the basic image features and
how they are implemented using Python.

Chapter 3, Drilling Deeper into Features – Object Detection, walks the reader through some of
the sophisticated image feature extraction algorithms, such as Local Binary Pattern and
ORB. These algorithms help to identify objects in an image and match them with other
images that have the same objects in them. Such matching algorithms form the basis of the
most complex computer vision algorithms.
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Chapter 4, Segmentation – Understanding Images Better, has a different theme than the last
two chapters. This chapter looks at different image segmentation algorithms, namely,
contour detection, superpixels, watershed, and normalized graph cut. These algorithms are
fairly easy to implement and run in almost real time. Image segmentation can be use in real-
world applications such as background subtraction, image understanding, and scene
labeling. Recent advances in machine learning, especially deep learning, have enabled more
sophisticated methods of image segmentation that involve almost no manual tuning of
parameters.

Chapter 5, Integrating Machine Learning with Computer Vision, brings together two different
fields together. This chapter shows how machine learning algorithms can be implemented
for images. We implement a classic image classification program for digit recognition.

Chapter 6, Image Classification Using Neural Networks, is an extension of the last chapter. In
this chapter, we implement digit classification using advanced machine learning technique
called neural networks. We install a new library called Keras to implement the neural
network.

Chapter 7, Introduction to Computer Vision Using OpenCV, introduces the readers to a new
computer vision library called OpenCV. In this chapter, we revisit all the image processing
concepts and algorithms that we have read so far in the book and implement them using
OpenCV.

Chapter 8, Object Detection Using OpenCV, explains different feature extraction algorithms
and we will be using OpenCV to implement all the algorithms.

Chapter 9, Video Processing Using OpenCV, explains how to work with videos instead of
images. The chapter uses code snippets to walk the reader through how to capture and save
a video. It then explains how to perform operations such as resizing and changing the color
space in videos. In the last section, we see how to implement object tracking in videos.

Chapter 10, Computer Vision as a Service, is the last chapter and it provides an overview of
how production-scale computer vision systems are built. The chapter focuses on the
infrastructure that is needed for computer vision algorithms. A simple computer vision
service is implemented, giving the readers a flavor of how services such as Google Image
search are built.
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What you need for this book
The software required for this book are as follows:

Python 3.5
Pillow 4.0
Scikit-image (Skimage) 0.13.0
OpenCV 3.2
Sklearn 0.18
Keras 2.0
Flask 0.12.2

Who this book is for
The book is ideal for developers who have basic knowledge of Python and want to build a
strong foundation in implementing computer vision algorithms. The book is also suitable
for developers with theoretical knowledge of computer vision but who lack the experience
of implementing the algorithms.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"To save or write an image we can use the imsave() function."

A block of code is set as follows:

>>> from PIL import Image
>>> img = Image.open("image.png")
>>> img.getpixel((100,100))
output
(150, 188, 233, 255)
>>> img.convert("L").getpixel((100,100))
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When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

>>> from skimage import io
 >>> img = io.imread("image.png")
 >>> io.imshow("image.png")
 >>> io.show()

Any command-line (including commands in the R console) input or output is written as
follows:

$: pip install Pillow

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes, for example, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important to us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors
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Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Computer-Vision-with-Python-3. We also have
other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
https://www.packtpub.com/sites/default/files/downloads/ComputerVisionwithPython

3_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Computer-Vision-with-Python-3
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/ComputerVisionwithPython3_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ComputerVisionwithPython3_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ComputerVisionwithPython3_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ComputerVisionwithPython3_ColorImages.pdf
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


1
Introduction to Image

Processing
Before diving straight into image processing, let's understand images first. An image, as
humans see it, is a two-dimensional grid with each cell in the grid filled with a color value,
otherwise called a pixel value. Each cell of the grid is formally called a picture element
(commonly abbreviated to pixel). A computer also sees the image in the same way. An
image on a computer is a two-dimensional matrix of numbers with each cell in the matrix
storing the corresponding pixel value(s) in the image. The following figure is an example of
an image matrix. The matrix of the portion of the image in the red box is shown on the
right:

Figure 1: This is the image matrix (right), as stored on a computer, of a small portion of the image (left) in the red box.
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Image processing is the field of studying and analyzing images. There is a lot of hidden
information in an image that we unconsciously process. For example, what are the different
objects in the image?, Is there a car in the image? What are the similarities between any two
images? Answers to these questions might feel simple to us humans, but for a computer, to
answer such questions is extremely difficult. Through the course of this book, we aim to
implement some of the algorithms that can help us answer some of these questions

The essence of image processing is to use the different properties of an image such as color,
co-relations between different pixels, object placements, and other fine details to extract
meaningful information such as edges, objects, and contours, which are formally called
image features. These features can then be used in different applications such as medicine,
security, social media services, and self-driving cars, some of which will be covered in the
following chapters.

Image processing - its applications
Let's take a look at some common applications of image processing:

Medicine: In recent years, the field of medicine has seen rapid advancements. For
example, more sophisticated imaging techniques and better techniques to detect
the nature of tumors in MRI/PET scans. The interdisciplinary research between
biology and image processing played an important role. The following image
illustrates how image processing algorithms are being used to detect tumors. This
has helped in early diagnosis of diseases and a more effective treatment:



Introduction to Image Processing

[ 9 ]

Figure 2 : The image shows how image processing can be used to detect tumors.

Security image processing: This has helped in developing efficient
security/surveillance systems. Advancements in this field have impacted a lot of
different consumer products as well as enterprises. Fingerprint unlock systems
and biometric security systems (face or iris recognition) are now being used in
small devices such as mobile phones and even in smart buildings. With the use of
these techniques, unlocking devices has become simpler and easier compared to
remembering and typing passwords or even carrying Radio Frequency
Identification (RFID) security cards. These concepts have been extended to home
security systems as well. Work in the field of human body detection and
recognition has led to smarter intrusion detection systems.
Social media: Various social media websites such as Facebook, Instagram, and
Snapchat use some form of computer vision techniques to enhance the user
experience. For example, Facebook's autotag feature recognizes faces in the
pictures that users upload and suggests you an appropriate name tag for the
person in the picture. Another application is the Google image search. It searches
for visually similar images over the World Wide Web, which is a non-trivial task.
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These are few of the applications of computer vision (image processing). There are
countless more such applications in the real world, which are outside the scope of this book.

Image processing libraries
There are several image processing libraries written in Python for computer vision. For the
purpose of this book we will look into scikit-image and pillow. These libraries will be used
throughout this book to implement the algorithms that will be discussed. In the next
section, you will be shown how to install these libraries and do some basic image
processing operations to prepare you for the next chapters.

Pillow
Pillow is an open source library that has been forked from the Python Imaging Library
(PIL). Pillow is a very good starting point for beginners who want to start with
implementing some basic algorithms before diving into the more complex ones. The book
will use Pillow version 4.0.

You can find more information on pillow at https:/ / python- pillow. org/
.

Installation
In this section, we will see how to install Pillow on different operating systems:

Windows: Pillow can be installed on windows using pip. Open the command-
line tool on your Windows machine and type in the following command and
press Enter:

        $: pip install Pillow

pip already comes installed with Python 2>=2.7.9 and Python 3>=3.4. In
case you do not have pip installed, follow the official instructions given at
https:/ /pip. pypa. io/ en/ stable/ installing/ #do-i- need- to-install-
pip.

https://python-pillow.org/
https://python-pillow.org/
https://python-pillow.org/
https://python-pillow.org/
https://python-pillow.org/
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OSX/macOS: For OSX/macOS, we will use Homebrew to install Pillow.

Go to https:/ /brew. sh/  for instructions on how to install Homebrew in
case you do not have it installed.

Open the terminal on your Mac. First, install the dependencies and then pillow
using the following commands:

        $: brew install libtiff libjpeg webp little-cms2
        $: pip install Pillow

If you have both Python2 and Python3 installed, then to install Pillow for
Python3, use the following command:

        $: python3 –m pip install Pillow

Linux: Use the pip command to install pillow on a Linux operating system:

        $: pip install Pillow

Getting started with pillow
This section will walk you through the basics of pillow using relevant code snippets.

Reading an image
To read an image from a jpg or a png file saved on your computer, Pillow's image module
provides a read() function (Image.open). This function returns an image object, which
contains information such as pixel type, image size, and image format. The following is an
example of how to read an image. Note that the import statement is only run once at the
beginning of the program:

>>> from PIL import Image
>>> img = Image.open("image.png")

To display the image on your screen, use the show() function as follows:

>>> img.show()

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
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Writing or saving an image
To write or save an image to a file on your computer, use the save() function associated to
the image object. It takes in the absolute or relative file path to where you want to store the
image:

>>> img.save("temp.png") # Example showing relative path
>>> img.save("/tmp/temp.png") # Example showing absolute path

Cropping an image
Cropping an image means to extract a particular region of the image, which is smaller than
the original image. This region in some books/references in called the Region of Interest
(ROI). The concept of ROI is sometimes useful when you want to run your algorithm only
on a particular part of the image and not the entire image. The image object has a crop()
function that takes two coordinates--the upper-left corner and the bottom-right corner of the
rectangle that you are interested in--and returns the cropped image:

>>> from PIL import Image
>>> dim = (100,100,400,400) #Dimensions of the ROI
>>> crop_img = img.crop(dim)
>>> crop_img.show()

The following images shows the crop function as used in the preceding code:

Figure 3: (Left) Original image and (right) a cropped region of the original image
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Changing between color spaces
Color spaces and channels
Like in the world of mathematics, we have different coordinate system: for example, a 2-D
cartesian plane and 2-D polar coordinates. A point could be stored as (x, y) or (r, theta).
Each coordinate system has a specific use case, which makes calculations easier. Similarly,
in the world of image processing, we have different color spaces. An image can store its
color values in the form of Red, Blue, Green (RGB) or it could as Cyan, Magenta, Yellow,
Key(black) (CMYK). Some examples of other color spaces are HSV, HSL, CMY, and it goes
on. Each value in the color space is called a color channel. For example, in the RGB color
space we say that Red, Blue, and Green each are channels of the image. An image can be
represented in many different modes (color spaces) such as RGB, CMYK, Grayscale, and
YUV. The colors in the image that we see are derived by the mixture of the colors in each
color channel of the color space. Let's look at some of the common color spaces in detail:

Grayscale: This is one of the simplest color spaces both in terms of understanding
and storing on a computer. Each pixel value in a grayscale image is a single value
between 0 and 255, with 0 representing black and 255 representing white. Keep in
mind that the value 255 is not a fixed value but depends on the depth of the
image (image depth is covered in the next section). Grayscale images are also
sometimes called black and white images but it is not entirely accurate. A black
and white image means that the pixel values can only be either 0 or 255 and
nothing in between.

Figure 4 Example of a grayscale image
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Red, Green, Blue (RGB): This is one of the most common color spaces that is
used in the image processing world and elsewhere. Most images that you view
over the internet or in your books are in the RGB space. In a typical RGB image,
each pixel is a combination of three values, each representing a color in red,
green, and blue channels. White color in RGB space is written as (255, 255, 255)
and black is written as (0, 0, 0). Red, green, and blue are represented by (255, 0, 0),
(0, 255, 0), and (0, 0, 255) respectively. Any other color is just a combination of
some values of red, green, and blue. Remember your painting class as a kid
where you used to mix the primary colors to create a new color. It's that simple!
Hue, Saturation, Value (HSV): This is a cylindrical coordinate system where we
project RGB values onto a cylinder. Figure 5 further illustrates this concept. The
HSV color space was designed keeping mind the unintuitive nature of the RGB
space. There is no clear intuition to how the color progresses in the RGB space.
The HSV scale handles this perfectly in the sense that you can fix the hue and
then generate different shades of that hue by just varying values and saturation:

Figure 5: Illustration of HSV color space

Image source: By HSV_color_solid_cylinder.png: SharkDderivative work: SharkD Talk - HSV_color_solid_cylinder.png, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=9801673

At the beginning of the chapter, we said that an image is stored in the form of a 2D matrix.
So how do we accommodate for the multiple channels in the image? Simple, we have
multiple 2D matrices for each channel. A little exercise--how many matrices will a grayscale
image have?
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If you try to print the pixel value of a grayscale image, you will only get one value, but if
you try to print the pixel value of an RGB image, then you will get three values; this shows
that RGB has three channels, red, green, and blue and grayscale images have only one
value.

In the following code snippet, we print the pixel values of an RGB image and a grayscale
image:

>>> from PIL import Image
>>> img = Image.open("image.png")
>>> img.getpixel((100,100))
output
(150, 188, 233, 255)
>>> img.convert("L").getpixel((100,100))

This is the following output:

181

The following image shows the different color channels in an RGB image:

Figure 6: Red, green, and blue respectively

Image depth

Image depth or the color depth is the number of bits used to represent a color of a pixel. The
image depth determines the range of colors an image can have. For example, if we have an
image with a depth of 4 bits, then the pixel value will range from 0 to 15 (which is the
biggest number we can store using 4 bits - 2^4 -1 = 15 ). Whereas if we use 8 bits, then the
value will range from 0 to 255, providing a finer color spectrum. Another way of thinking
about image depth is that the number of bits also determines the number of colors, which
can be used in an image. For example, 1 bit implies two colors, 2 bits - four colors, and 8 bits
- 256 colors.
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Images can be converted from one color space to another using the convert function of the
image module. To convert an image from RGB color space to grayscale color space, use the
L mode. There are various other modes available such as 1 which is 1-bit pixel mode, P-8 bit
pixel mode, RGB-3X8 bit pixel, and RGBA-4X8 bit pixel.

The following code snippet shows how to convert a color image to grayscale:

>>> from PIL import Image
>>> grayscale = img.convert("L")
>>> grayscale.show()

The link to the documentation of the Pillow library is
http://pillow.readthedocs.io/en/3.1.x/reference/Image.html#PIL.I
mage.Image.convert.

The following image shows the result of the preceding code (converting an image from RGB
mode to grayscale mode):

Figure 7: Output after converting from RGB mode to grayscale

Geometrical transformation
There are times when you need to perform different types of transformations to images
such as resize, rotate, and flip. Pillow provides direct functions to perform these
transformations, saving you from having to write the code from scratch:

Resize: To resize an image, use the resize() function, which takes a tuple of the
new size as an argument:

        >>> from PIL import Image
        >>> resize_img = img.resize((200,200))
        >>> resize_img.show()

http://pillow.readthedocs.io/en/3.1.x/reference/Image.html#PIL.Image.Image.convert
http://pillow.readthedocs.io/en/3.1.x/reference/Image.html#PIL.Image.Image.convert
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Rotate: To rotate an image, use the rotate() function, which takes in the
degrees to be rotated (counter clockwise) as an argument:

        >>> from PIL import Image
        >>> rotate_img = img.rotate(90)
        >>> rotate_img.show()

The result of the preceding code is shown in the following image:

Figure 8: Output after rotating the image by 90 degrees

Image enhancement
Image enhancement involves operations such as changing the contrast, brightness, color
balance, or sharpness of an image. Pillow provides an ImageEnhance module, which has
functions that can help you perform the earlier mentioned operations.

We will begin with importing the ImageEnhance module using the following code:

>>> from PIL import ImageEnhance

After importing the library, let us see how to use the functions available in the library. First
we will see how to change the brightness of an image:

Change brightness of an image: We will use the following code to change the
brightness:

        >>> enhancer = ImageEnhance.Brightness(img)
        >>> enhancer.enhance(2).show()
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The enhance() function takes a float as an argument, which describes the factor which we
want to change the brightness of the image. A factor value less than 1 will decrease the
brightness and a factor value greater than 1 will increase the brightness of the image. A
factor value equal to 1 will give the original image as output. The output of the enhance()
function is an image with the changed brightness:

Figure 9: This image shows the increase in the brightness of the image - the image to the left is the original picture and the image to the right is the enhanced one

Next we will see how to change the contrast of an image.

Change the contrast of the image: The following code snippet shows how to
enhance the contrast of a given image:

        >>> enhancer = ImageEnhance.Contrast(img)
        >>> enhancer.enhance(2).show()

Again the enhance() function takes a float argument. A factor equal to 1 will give you the
original image, while a factor value less than 1 will decrease the contrast and greater than 1
will increase the contrast:

Figure 10: This figure shows the change in the contrast of the image - the image to the left is the original picture and the image to the right is the enhanced image
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Accessing pixels of an image
Sometimes for performing tasks such as thresholding (which will be covered later in the
book), we have to access the individual pixels in an image. Pillow provides a PixelAccess
class with functions to manipulate image pixel values. getpixel() and putpixel() are
some of the functions in the PixelAccess class:

getpixel(): This function returns the color value of the pixel at the (x, y)
coordinate. It takes a tuple as an argument and returns a tuple of color values:

        >>> img.getpixel((100,100))

This is the following output:

        (150, 188, 233, 255)

putpixel(): This function changes the color value of the pixel at the (x, y)
coordinate to a new color value. Both the coordinates and the new color value are
passed as an argument to the function. If the image has more than one band of
colors, then a tuple is passed as an argument to the function:

        >>> img.putpixel((100,100),(20,230,145))
        >>> img.getpixel((100,100))

This is the following output:

        (20, 230, 145,255)

Introduction to scikit-image
So far we have looked at only integer values for the colors. Some libraries also work with
float images where the pixel value lies between 0 and 1.

In this section, we will learn about another Python library for image processing, scikit-
image, also represented as Skimage. An scikit-image provides more advanced operations as
compared to Pillow and is suitable for building enterprise-scale applications.

Here is the official website for scikit-image: http:/ /scikit- image. org/ 

http://scikit-image.org/
http://scikit-image.org/
http://scikit-image.org/
http://scikit-image.org/
http://scikit-image.org/
http://scikit-image.org/
http://scikit-image.org/
http://scikit-image.org/
http://scikit-image.org/
http://scikit-image.org/
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Installation
In this section we look at how to install scikit-image for Python 3 on different operating
systems.

OSX/macOS: For installing scikit-image on OSX/macOS, we will use pip. We
have already seen how to use pip while installing pillow:

        $: python3 -m pip install -U scikit-image
        $: python3 -m pip install scipy
        $: python3 -m pip install matplotlib

Linux (Ubuntu): We will use the command-line interface in Linux systems to
install scikit-image. Open the default terminal on your computer and type in the
following command:

        $: sudo apt-get install python3-skimage

Windows: Similar to what we did for the Linux operating system, for Windows
we will also use the command-line interface. Open the the command-line tool
and type in the following line to install skimage on Windows:

        pip install scikit-image

Getting started with scikit-image
In this section, we will walk through some basic operations that can be performed using the
scikit-image library:

Reading an image: As you know, reading an image is the most fundamental
operation you would like to perform. In scikit-image, the image can be read using
the imread() function in the io module of the library. It returns an ndarray. An
ndarray in Python is an N dimensional array. The following is an example:

        >>> from skimage import io
        >>> img = io.imread("image.png")
        >>> io.imshow("image.png")
        >>> io.show()
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Writing/saving an image: To save or write an image we can use the imsave()
function. It takes the absolute or relative path of the file where you want to save
the image and the image variable as input:

        >>> from skimage import io
        >>> img = io.imread("image.png")
        >>> io.imsave(“new_image.png”, img)

Data module: This module provides some standard test images which one can
work on like a grayscale camera image, grayscale text image, coffee cup, and so
on. These images can be used as great examples to demonstrate some of the
algorithms in image processing.
For example, in the following code, skimage.data.camera() returns an image
array:

       >>> from skimage import data
       >>> io.imshow(data.camera())
       >>> io.show()

The following image is the output of the code; that is, the image returned by
skimage.data.camera():

Figure 11: Image returned by the camera() function
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Similar to the camera image, we have another image provided by scikit-image.
skimage.data.text() returns an image which has handwritten text in it:

>>> from skimage import data
>>> io.imshow(data.text())
>>> io.show()

The following image is the image returned by skimage.data.text():

Figure 12:Image returned by the text() function and it can used as an example for corner detection

Color module: This module of the library contains functions for converting the
image from one color space to another. Two such functions are shown as follows:

Convert RGB to gray: The rgb2gray() function in the module can
be used to convert a RGB image to a grayscale image. It takes the
RGB image array as input and returns the grayscale image array.
The following code snippet is an example:

        >>> from skimage import io, color
        >>> img = io.imread("image.png")
        >>> gray = color.rgb2gray(img)
        >>> io.imshow(gray)
        >>> io.show()
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The following figure is the output of the code:

Figure 13: Example of a grayscale image

Convert RGB to HSV: The rgb2hsv() function in the module can
be used to convert an RGB image to an HSV image. It takes the
RGB image array as input and returns the HSV image array. The
following code shows how to convert RGB to HSV:

             >>> from skimage import data
             >>> img = data.astronaut()
             >>> img_hsv = color.rgb2hsv(img)

There are other functions which can be seen at http:/ /scikit- image. org/
docs/ dev/ api/ skimage. color. html#module- skimage. color

http://scikit-image.org/docs/dev/api/skimage.color.html#module-skimage.color
http://scikit-image.org/docs/dev/api/skimage.color.html#module-skimage.color
http://scikit-image.org/docs/dev/api/skimage.color.html#module-skimage.color
http://scikit-image.org/docs/dev/api/skimage.color.html#module-skimage.color
http://scikit-image.org/docs/dev/api/skimage.color.html#module-skimage.color
http://scikit-image.org/docs/dev/api/skimage.color.html#module-skimage.color
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Draw module: The draw module has various functions to draw different shapes
such as circles, ellipses, and polygons. Let's look at each of them one by one:

Circles: To draw a circle on an image, skimage provides a
circle() function. It takes the center coordinates and the radius
as input and returns all the pixel coordinates, which lie within the
circle of the given coordinates and radius. After getting the pixels
within the circle, assign them the value 1 in the 2D matrix and all
the other points make it 0.

            >>> import numpy as np
            >>> from skimage import io, draw
            >>> img = np.zeros((100, 100), dtype=np.uint8)
            >>> x , y = draw.circle(50, 50, 10)
            >>> img[x, y] = 1
            >>> io.imshow(img)
            >>> io.show(

The preceding code snippet would give you a circle as shown here:

Figure 14: Circle of radius 10 and Centre (50, 50)
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Ellipses: To draw an ellipse on an image, skimage provides an
ellipse() function. This function of the draw module can be
used to get the coordinates of the pixels within the ellipse of given
parameters. Then, these pixels can be distinguished from others by
increasing the pixel value:

            >>> import numpy as np
            >>> from skimage import io, draw
            >>> img = np.zeros((100, 100), dtype=np.uint8)
            >>> x , y = draw.ellipse(50, 50, 10, 20)
            >>> img[x, y] = 1
            >>> io.imshow(img)
            >>> io.show()

Figure 15: A circle
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Polygons: The polygon() function takes the array of x and y
coordinates of the vertices and returns the pixel coordinates which
lie within the polygon:

            >>> import numpy as np
            >>> from skimage import io, draw
            >>> img = np.zeros((100, 100), dtype=np.uint8)
            >>> r = np.array([10, 25, 80, 50])
            >>> c = np.array([10, 60, 40, 10])
            >>> x, y = draw.polygon(r, c)
            >>> img[x, y] = 1
            >>> io.imshow(img)
            >>> io.show()

Figure 16: A polygon

A point worth noting in this section is that the (0, 0) point is not at the bottom left of the
image but at the top right of the image. This is a standard convention followed in Computer
Vision.
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Summary
In this chapter, we saw what images are and how are they interpreted by a computer. Then
we looked at the basics of image processing and its various applications in medicine,
security/surveillance, and social media. Further, two image processing libraries, pillow and
scikit-image, were introduced. We saw how we could perform basic operations such as
reading/writing an image, converting the image between color spaces, and finally, we
ended with how to draw some basic geometrical figures using scikit-image. This chapter
forms the foundation of the chapters that follow.

In the next chapter, we will look at some more complex image processing algorithms, such
as edge detection, and also some commonly used filters.



2
Filters and Features

After having understood the basics of image processing and their libraries (pillow and
skimage), in this chapter, we will extend our understanding by looking at some
fundamental concepts such as kernels, convolution, filters, and basic image features. We
will learn about the different types of image filters such as Gaussian filter and Sobel. We
will also learn about edge detection and Hough transformations that will come in handy
later on as essential preprocessing steps in a larger computer vision application. Going
forward, the reader is free to use either library (pillow or skimage) of their choice. We
provide examples for both of these in this chapter.

Image derivatives
An image derivative is defined as the change in the pixel value of an image. The rate of
change of a function is defined as:

Using this definition in the context of images, calculate the change in the pixel values of an
image and, since pixels are discrete image derivatives, they are defined as f(x+1) – f(x)/1. To
calculate the derivative at any point, we can use finite difference methods to calculate the
derivatives such as forward difference, backward difference, and central difference. Finite
difference methods are defined as follows:

Forward difference:

f (x + 1) - f (x)
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Backward difference:

f(x) – f(x-1)

Central difference:

f(x+1) – f(x-1)

Given an image matrix, we can find the derivative using another matrix called mask or
kernel. For example, the derivative masks for forward, backward, and central difference are
as follows:

[1 -1]

[-1 1]

[1 0 -1]

Another example of a derivative mask is:

The preceding matrix is to calculate the derivative of a 2D image matrix in the x direction.
Similarly, a derivative can also be calculated in the y direction.

In order to calculate the derivative at any point in the image, place the derivative mask on
the image matrix with the center of the mask at the point on which you want to calculate
the derivative. Then, add the product of all the overlapping terms cell by cell. This will give
you the derivative of the image at that point. Figure 1 further illustrates how to calculate the
derivative of an image:

Figure 1
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The derivative mask is placed on the value 50 at (2,2). The red portion shows the
overlapping pixels of the matrix and the derivative mask. After calculation, we get the
output seen in green in the derivative image; it is the derivative of the pixel at (2,2) from the
original image.

Kernels
As you saw in the previous section, we used a derivative mask to an calculate image
derivative. Before going further into the chapter, let's formally define what these masks are.
A lot of times in texts/research papers/books related to image processing, we use the terms
mask, kernel, and filter interchangeably. What these essentially mean is a square matrix of
numbers that is used to compute various properties or characteristics in an image. You have
already seen an example of an image derivative. Some other common examples of such
kernels/filters/masks are edge detection, image blurring, and more. As you read through
this chapter, you will see various examples of kernels that will help you understand this
better.

Convolution
Convolution in the context of image processing is defined as the sum of the product of the
corresponding elements of a kernel matrix to an image matrix. Let's try to understand what
this means. Given a kernel (matrix), multiply the corresponding elements of the image
matrix and kernel matrix, and sum the multiplied values centered around a particular pixel
in the image. In a new empty (black) image, set the corresponding pixel from the original
image to the sum of multiplied values. Now, perform this operation for all the pixels in the
original image. This is image convolution!

There are slight variations to the image convolution depending on different applications.
Sometimes the kernel matrix is X, Y flipped before it is multiplied with the original image.
X flip means to flip the order of the rows in the kernel. For example, the last row of the
kernel will become the first row of the flipped matrix and the first row will become the last
row, and similarly for all the other rows. Similarly, for Y flip, we flip the columns instead of
the rows. The new kernel matrix after the X and Y flip is used for performing convolutions.
In most cases, the kernel matrix is symmetric; therefore, there is no need to perform the X or
Y flip; we directly multiply the corresponding elements and add them.
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The following figure gives us an example of an image convolution:

Figure 2 Example of convolution given 3*3 mask

More examples of convolution follow:

Figure 3: Original image
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The following figure shows the examples of the convolution of the image with the given
kernels:

Figure 4

Understanding image filters
Enhancing an image by applying some function on the pixel values is called filtering. The
process of filtering focuses on the values of the neighborhood of a pixel and uses some to
modify the value of the pixel. This is done by convolving the image matrix with a kernel.
Therefore, for different filters, you can create different types of kernels. By convolving the
image matrix with the kernel, you are basically taking a weighted average of the
neighboring values. This method can be used to reduce noise in an image, create effects,
and so on. Filtering can also be used in reducing noise in an image as it takes a weighted
average and by averaging the noise in a particular pixel also reduces noise. Types of
filtering are as follows:

Gaussian blur
Median filter
Dilation and erosion
Customs filters
Image thresholding
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Gaussian blur
The Gaussian blur is one the most used filters in image processing. It uses the Gaussian
distribution bell curve defined by the following function:

When we use the preceding formula and plot the input and the output values, we get
something similar to the image shown in Figure 5. What this means is that when we create a
kernel that follows a Gaussian distribution, the center pixel gets the most weight and its
neighboring pixels get lesser weight when performing convolution. The pixel which has to
be modified will have the highest weight in the kernel and the weight decreases for the
pixels which are far away.

The following image shows different Gaussian curves for a sigma value equal to 1:

Figure 5

The point to note here is that the Gaussian distribution formula that we saw previously is a
continuous function whereas images are discrete. Hence, we discretize the values from the
Gaussian distribution before making a kernel matrix out of it.
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Let's look at a code sample, which applies a Gaussian blur to an image.

Here is an example using pillow:

        >>> from PIL import Image
        >>> from PIL import ImageFilter
        >>> img = Image.open("image.png")
        >>> blur_img = img.filter(ImageFilter.GaussianBlur(5))
        >>> blur_img.show()

The ImageFilter library has an inbuilt function for the Gaussian blur. It takes a blur
radius as input. The blur radius controls the number of neighboring pixels around the
center pixels that are considered while applying the Gaussian blur.

The following is the output of the preceding code:

Figure 6: Output of the Gaussian blur using Pillow; the image on the left is the original image and the image on the right is the result of the Gaussian blur

Here is an example using skimage:

The filter module of the library provides a Gaussian filter, which takes the
image and the standard deviation (sigma) of the Gaussian kernel:

           >>> from skimage import io
           >>> from skimage import filters
           >>> img = io.imread("image.png")
           >>> out = filters.gaussian(img, sigma=5)
           >>> io.imshow(out)
           >>> io.show()
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The following figure is the output of the code with the sigma equal to 5:

Figure 7: Output of the Gaussian blur using Pillow; the image on the left is the original image and the image on the right is the result of the Gaussian blur

Median filter
This is a very simple filter that returns the median value from the pixel and its neighbors.
Both pillow and skimage provide built-in functions for this filter.

The following code sample applies a median filter over an image using pillow:

>>> from PIL import Image
>>> from PIL import ImageFilter
>>> img = Image.open("image.png")
>>> blur_img = img.filter(ImageFilter.MedianFilter(7))
>>> blur_img.show()

Similarly, using skimage, the following code applies a median filter to a given image:

>>> from skimage import io
>>> from skimage import filters
>>> img = io.imread("image.png")
>>> out = filters.median(img, disk(7))
>>> io.imshow(out)
>>> io.show()
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Dilation and erosion
Morphological operations on images are operations that use the inherent structure or
features of an image and processes the image while maintaining the overall structure. The
most common examples of morphological operators are erosion and dilation. Let's
understand each of them in detail in the following section.

Erosion
Erosion, like in geology, means the removal of the top layer of soil or earth by wind, water,
and so on. In image processing too, it means to remove parts of the image. Like the top
layer of the soil starts depleting, applying erosion to an image makes the objects in the
image to shrink while maintaining the overall structure and shape of the image. But why do
we want to shrink objects in an image? Consider a scenario where you have two objects in
an image and they are really close by, and you do want your algorithm to assume that they
are the same object. Hence you shrink both the objects to mark a clear distinction between
the two objects. Another use case of erosion is to remove noise from the image. Erosion
might not be the best option to remove all kinds of noise but an upcoming image shows a
typical example of noise that can be treated with erosion.

The following figure is an example of a matrix after an erosion operation:

Figure 8: Example of a matrix after an erosion operation; the original image is on the left and the result is on the right
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Skimage provides a binary_erosion() function for erosion in its morphology module.
This function sets the value of the pixel to the min value of its neighboring pixels.

An example usage of the function is as follows:

from skimage import morphology
from skimage import io

img = io.imread('image.png')
eroded_img = morphology.binary_erosion(img)

io.imshow(eroded_img)
io.show()

The following figure is an example of erosion of an image:

Figure 9: An example of erosion; the original image is on the left and the result is on the right

As you can see in the preceding image, all the letters got shrunk a bit after erosion.

Dilation
Dilation is just the opposite of erosion. While in erosion we shrunk parts of the image, here
we try to expand the parts of the image. Dilation finds its use in situations where we want
to magnify small details of the image. It is also helpful in situations where you want to fill
up unwanted gaps/holes in an image (refer to Figure 10). Again, the point to note is that a
dilation operation maintains the structure and shape of the original image.
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The following figure shows the example of a matrix after a dilation operation:

Figure 10: Dilation operation on a given matrix (left)

Skimage provides a binary_dilation() function for dilation in its morphology module.

The following code shows how to use this function:

from skimage import morphology
from skimage import io

img = io.imread('image.png')
dilated_img = morphology.binary_dilation(img)

io.imshow(dilated_img)
io.show()

The following figure is an example of dilation of an image:

Figure 11: An example of dilation; the original image is on the left and the result is on the right



Filters and Features

[ 39 ]

Custom filters
So far we have seen filters that are used commonly in image processing and are widely
accepted by researchers and developers. But there are times when you want to design your
own filter. The good news is you do not have to write the entire convolution process again
from scratch. Skimage and pillow both provide the option of applying custom filters on
images.

The following function can be used to create a kernel for a filter in pillow:

>>> from PIL import ImageFilter
>>> kernel = ImageFilter.Kernel((3,3), [1,2,3,4,5,6,7,8,9])

The kernel function takes the size, the sequence of kernel weights, the scale, and the offset
as parameters, where size is the size of the matrix, scale is the value by which the result of
the pixel is divided, and offset is the value that is added to result after scaling. The default
scale value is the sum of the weights of the kernel. The following code shows how to apply
the kernel on an image:

>>> from PIL import Image
>>> from PIL import ImageFilter
>>> img = Image.open("image.png")
>>> img = img.convert("L")
>>> new_img = img.filter(ImageFilter.Kernel((3,3),[1,0,-1,5,0,-5,1,0,1]))
>>> new_img.show()

The filter function takes the kernel as input.

The following figure is the output of the preceding code:

Figure 12: The image on the left is the original image and the image on the right is the result of applying the filter
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The same thing can be done using skimage too.

Image thresholding
Thresholding in image processing means to update the color value of a pixel to either white
or black according to a threshold value. If the pixel value is greater than the threshold
value, then set the pixel to WHITE, otherwise set it to BLACK. There are variations to
thresholding as well. One of them is inverse thresholding, where we flip greater than to
lesser than and everything else remains the same.

This is one of the simplest ways of filtering images. Using the concept of getting pixel
values and setting pixel values from Chapter 1, Introduction to Image processing, it is fairly
simple to write a code for image thresholding. Let's look at how we can implement image
thresholding using scikit-image.

The following piece of code implements image thresholding:

from skimage.filters import threshold_otsu, threshold_adaptive
from skimage.io import imread, imsave
from skimage.color import rgb2gray

img = imread('image.jpg')
img = rgb2gray(img)

thresh_value = threshold_otsu(img)
thresh_img = img > thresh_value

Image thresholding, as explained earlier, works well in simple cases where the background
of the image is uniform. But there can be scenarios when the background of the image is not
uniform and this happens more often than not. To effectively threshold the image, instead
of using a global threshold value, we compute different threshold values for different parts
of the image. This is known as adaptive thresholding. As the name suggests, we adapt the
threshold value according to different parts of the image. The code for an adaptive
threshold is left as an exercise for the reader.



Filters and Features

[ 41 ]

Edge detection
Detecting edges in an image is an important concept and has many applications. Detecting
edges can help us know more about the structure and the boundary of the objects in an
image. Edges are defined as parts of images where there is significant change in the pixel
values while traversing the image. What this means is, say we are scanning an image from
left to right, and as we scan the image, we notice that the pixel value of the previous pixel is
way less than the pixel value of the current pixel. This implies that the current pixel can be a
probable edge pixel. As we saw earlier in the chapter, an image derivative is the way of
finding the change in pixel values and hence it could be a naive way of finding edges in an
image. Using an image derivative, we can find pixels where there is change in the pixel
values among the neighboring pixels and that pixel will probably be a part of an edge.
Using only image derivatives is not very robust though. Images with a lot of noise will
produce a lot of false edges, which will reduce the overall quality of your vision system.

There are more sophisticated edge-detection techniques such as the Sobel and Canny edge
detectors that we will cover in this section, which are more robust and produce fewer false
results.

Sobel edge detector
The idea behind the Sobel edge detector is to find the pixels with a large magnitude of
gradient values. We are now not only interested in the change, but also the magnitude of
change (which is also the gradient). The magnitude of the gradient is calculated by finding
the square root of the sum of squares of the image derivative in the x-direction and the
derivative in the y-direction. The equation for the gradient is as follows:

To determine how large values should be considered, we set a threshold. So after finding
the gradient, we take all the gradient values, which exceed that particular threshold.
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Why have pixels with large gradient values?
Consider a solid black box (refer to Figure 13). All the pixels within the black box have
similar pixel values, whereas, the pixel values on the boundary or the edge vary
significantly from their neighboring pixels. Therefore, it makes sense to consider pixels with
large gradient values:

Figure 13: Image to depict why pixels with large values are selected

The kernel used in the Sobel edge detector algorithm is as follows:

Here is a code to find edges using the scikit-image:

>>> from skimage import io
>>> from skimage import filters
>>> from skimage import color
>>> img = io.imread("image.png")
>>> img = color.rgb2gray(img)
>>> edge = filters.sobel(img)
>>> io.imshow(edge)
>>> io.show()
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The following figure is the result of the Sobel edge detector:

Figure 14: The image on the left is the original image and the image on the right is the output Sobel edge detector

Note that the Sobel function in the filter module takes a 2D array as input; therefore, you
will have to convert the image into a grayscale image first.

Canny edge detector
The Canny edge detector is another very important algorithm. It also uses the concept of
gradients like in the Sobel edge detector, but in Sobel we only considered the magnitude of
the gradient. In this we will also use the direction of the gradient to find the edges.

This algorithm has four major steps:

Smoothing: In this step, the Gaussian filter is applied to the image to reduce the1.
noise in the image.

Finding the gradient: After removing the noise, the next step is to find the2.
gradient magnitude and direction by calculating the x-derivative and y-
derivative. The direction is important, as the gradient is always perpendicular to
the edge. Therefore, if we know the direction of the gradient, we can find the
direction of the edges as well.
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Nonmaximal suppression: In this step, we check whether the gradient calculated3.
is the maximum among the neighboring points lying in the positive and negative
direction of the gradient; that is, whether it is the local maxima in the direction of
the gradient. If it is not the local maxima, then that point is not part of an edge. In
the following figure, point (x2, y2) is the local maxima, as this point has the highest
change in the pixel values and it is part of the edge whereas the other two points
on the line do not have a large change in the pixel values and are not the local
maxima:

Thresholding: In this algorithm, we use two threshold values--the high threshold4.
and low threshold, unlike in Sobel where we just used one threshold value. This
is called hysteresis thresholding. Let's understand how this works. We select all the
edge points, which are above the high threshold and then we see if there are
neighbors of these points which are below the high threshold but above the low
threshold; then these neighbors will also be part of that edge. But if all the points
of an edge are below the high threshold, then these points will not be selected.

So these were the basic steps to detect an edge using the Canny edge detector algorithm.
Now we will see how to find edges using this algorithm in Python3.
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The scikit-image library provides a function for Canny edge detection in the feature
module:

>>> from skimage import io
>>> from skimage import feature
>>> from skimage import color
>>> img = io.imread("image.png")
>>> img = color.rgb2gray(img)
>>> edge = feature.canny(img,3)
>>> io.imshow(edge)
>>> io.show()

The function takes the image and standard deviation for the Gaussian filter as the input.
The following figure shows the output:

Figure 15: The image on the left is the original image and the image on the right is the output Canny edge detector Hough transformation

Let's recap! So far we have been able to apply filters to find edges. Can we detect certain
shapes in an image such as circles, straight lines, or even ellipses? In this section, we will
look at how to detect certain rigid shapes in an image using what is known as the Hough
transform. Hough transformation is a general framework that takes in the parameterized
equations of rigid shapes and detects these shapes in an image. For the purpose of this
book, we will only look at straight lines and circles, but this technique can be extended to
any other shape that you fancy. Let's start with detecting straight lines and then go on to
circles.
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Hough line
In mathematics, we define a line using two parameters--a slope and a constant (the point of
intersection with the y axis). In this algorithm, we exploit the same concept and try to find
the slope and constants of the lines (if any) in an image. Given any two points in the image,
we substitute in the equation of the line (as shown next) and solve for the slope and
intercept of the line. For example, let the two given points be (x1, y1), (x2, y2).

The equation of a line is defined as follows:

At (x1, y1):

At (x2, y2):

We will solve these equations to find out (m, c) and keep a count of the number of points
which satisfy this (m, c). After we have run the algorithm over the entire image, we will
know how many points satisfy a given pair of (m, c) values. Let's call these values a score
for a given pair. Using a manually set threshold, we only select the (m, c) pairs that have a
score greater than the threshold. The algorithm returns these pairs and the user can then
draw a line using the slope and the constant value. An interesting point to note here is that
using just the slope and the constant value, you will never be able to guess the endpoints of
the line and you will never be able to accurately draw a line on the image. To solve this
problem, you can, along with the score, also maintain the list of points that correspond to a
given (m, c) pair and calculate the endpoints using them.

There is another variation of the Hough line called the probabilistic Hough line. It
essentially does the same thing but uses a different approach in calculating the line
parameters. It uses more complex mathematics.
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The following code shows how to use Hough lines using skimage:

from skimage.transform import (hough_line, probabilistic_hough_line)
from skimage.feature import canny

#Read an image
image = io.imread('image.png')

#Apply your favorite edge detection algorithm. We use 'canny' for this
example.
edges = canny(image, 2, 1, 25)

#Once you have the edges, run the hough transform over the image
lines = hough_line(image)
probabilistic_lines = probabilistic_hough_line(edges, threshold=10,
line_length=5, line_gap=3)

#As an exercise you can compare the results of both the methods.

Always run Hough transformations on only the edges. (can you think
why?)

Hough circle
The Hough circle is similar to the Hough line; only the equation changes here. For the 
Hough circle, we use the following equation of a circle, where (h, k) is the center of the circle
and r is the radius :

Now, instead of the slope and intercept, the algorithm will find the coordinates of the center
of the circle and its radius using the points in the image.
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Summary
In this chapter, we first learned about image filters and convolutions. Then we went on to
see some examples of filters such as the Gaussian blur, median filter, dilation, and erosion.
These are mostly used as preprocessing steps in a larger computer vision system and are
seldom used in isolation. Then we looked at more interesting concepts such as edge
detection, where we looked at the Canny and Sobel edge detectors. Edge detection also
plays a very important role in computer vision and having a thorough understanding of
these concepts will help you understand even more complex algorithms that we will see
further in the book. Finally we learned how to detect rigid shapes in an image using the
Hough transformations.

As we will see in the next chapter, some feature detection algorithms exploit corners in
images to extract useful features.



3
Drilling Deeper into Features -

Object Detection
A lot of times in a real-world situation, we have to compare two images, or search for an
image of an object in a large database of images. An example could be Google Image Search,
searching for a person's fingerprint in a defense organization's fingerprint database. Taking
a simple difference of the image with all other images from the database will not give a
desired solution as there could be distortions or other small variations in the image that will
give non-zero output even for matching images. So how do we solve this problem? We
need ways in which we are able to describe an image that is independent of the colors,
scale, rotation angle, and affine transformations. In the context of computer vision, we
essentially want to describe an image in terms of its features. In the last chapter, we looked
at some basic features in an image such as gradients and edges but these are not sufficient
to describe an image in a unique manner and are very susceptible to changes in brightness,
contrast, and so on. Using only edges, we would also not be able to distinguish, between,
say a clock and a steering wheel, since both will return a set of points forming a circle. This
shows the need for better feature extraction techniques that can help us in such
situations. In this chapter, we will expand our knowledge of the features and look at more
advanced image features that are able to extract finer details in the image, and are more
robust and invariant to scale, color, and rotation. The following is the list of features that we
will cover in this chapter:

Corner detection (Harris corner)
Cascade classifier—Local Binary Pattern (LBP)
Oriented FAST and Rotated BRIEF (ORB)

Before we get into the aforementioned algorithms, let us briefly go through what image
features are and why they are important to what we are trying to achieve.



Drilling Deeper into Features - Object Detection

[ 50 ]

Revisiting image features
Image gradients and edges give us a lot of information about the shapes of different objects
in the image. Using edges, we might also be able to determine the orientation of the objects
in the image sometimes. But these are weak features and cannot be relied upon all the time.
They are very sensitive to variations in brightness, contrast, and backgrounds. We need
features that are more stable than just gradients or edges. To solve this problem, we use
more sophisticated feature descriptors such as corners, Local Binary Pattern (LBP), BRISK,
and Oriented FAST and Rotated BRIEF. Let's understand what is different in these feature
descriptors that makes them better than using just edges and image gradients.

To call a feature descriptor a good feature, it should be invariant to changes in scale,
rotations, and translations. What this means is that if we are able to describe a car in an
image in a particular way, then we should also be able to describe the car in the same way,
even when the image is scaled down to half its size (scale invariant) or is rotated by 90
degrees. Having this characteristic in a feature descriptor makes it more robust to variations
in the image and handle real-life situations effectively. With advancements in machine
learning, researchers and people in the industry now use neural networks to extract
features from an image. Results have shown significant improvement over the traditional
algorithms that we will see in this chapter. Having said that, it is important to understand
the more traditional algorithms to fully understand and appreciate how feature extraction
actually works.

We will start off with the most basic feature that can be defined in an image - corners.
Simply put corners are nothing but points of intersection of two edges. We aim to find all
the corners in an image and use them as a way of describing an image. For example, say we
have a picture of a table top. We compute four corner points in the image. We are given
another image of a table top and are asked a question—"Is this image also of a table top?"
Now what do we know about a table top? We know that it has four corners. So we calculate
the number of corners in the new image that we are given. We see that this image also has
four corner and we say that the new image is also of a table top. Do you see a problem with
this approach? Yes! A lot of objects can have four corners. So maybe corners are not the best
way to describe an image but they surely are an integral part of the algorithms that we will
study later in this chapter. On the other hand, there are use cases where corners prove very
helpful and we will learn about them in the next section.
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Harris corner detection
A very crude way to find corners in an image is to first find all the edges in the image and
then pairwise check if the edges intersect. This might work well in some cases but will be
very inefficient and impractical in real situations. Let us look at a faster corner detection
algorithm—Harris corner.

Corners are considered as important points in an image. They are used in many
applications such as image correlation, video stabilization, and 3D modeling. Harris corner
is one of the most used techniques in corner detection. The Harris corner detector uses a
sliding window over the image to calculate the variation in intensity. Since corners will
have large variations in the intensity values around them, we are looking for positions in
the image where the sliding windows show large variations in intensity in all
directions. Figure 1 illustrates this concept. The Harris corner detector uses mathematical
equations to determine which case holds from Figure 1:

Figure 1: The different cases for the Harris corner detector; a corner is defined as a point where the image changes significantly in all directions

We try to maximize the following value for detecting a corner:

Here, I is the image, u is the shift in the sliding window in the horizontal direction, and v is
the shift in the vertical direction.



Drilling Deeper into Features - Object Detection

[ 52 ]

The following is an implementation of Harris corner using scikit-image:

from matplotlib import pyplot as plt
from skimage.io import imread
from skimage.color import rgb2gray
from skimage.feature import corner_harris, corner_subpix, corner_peaks

#Read an image
image = imread('test.png')
image = rgb2gray(image)

#Compute the Harris corners in the image. This returns a corner measure
response for each pixel in the image
corners = corner_harris(image)

#Using the corner response image we calculate the actual corners in the
image
coords = corner_peaks(corners, min_distance=5)

# This function decides if the corner point is an edge point or an isolated
peak
coords_subpix = corner_subpix(image, coords, window_size=13)

fig, ax = plt.subplots()
ax.imshow(image, interpolation='nearest', cmap=plt.cm.gray)
ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3)
ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15)
ax.axis((0, 350, 350, 0))
plt.show()

The high-level organization of the code stays the same as for the previous demonstrations.
We first read the image that we want to run the algorithm on. Then, we calculate the Harris
corner response using the corner_harris() function. The Harris detector algorithm
essentially is written inside the corner_harris() function and rest are just helper
functions that make the output more interpretable to the developer. Let us look at each of
them one by one.

corner_harris: This is the primary function which, for each pixel in the image,
calculates a measure of how probable it is that the pixel is a corner pixel. The
exact mathematics behind The Harris corner detector is beyond the scope of this
book but as we saw earlier it tries to find patches in an image which shows
significant variation in all directions. And the center pixels of the patches are
marked as probable corner pixels.
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corner_peaks: Using the output from the corner_harris() function,
corner_peaks tries to find the actual corner points in the image using the measure
provided by the carner_harris() function. This function returns the corner
pixel coordinates which can be used to plot on the image.
corner_subpix: This is another helper function that helps to fine tune the
results that we got from corner_peaks. For example, it tries to differentiate if
the point is the intersection of two edges or it is really a corner (like of a square).
It is not necessary to use this function unless your application really demands this
level of classification.

The following is the output of the given code:

Figure 2: The red cross signs show the corners detected by the Harris corner detector

A point to note here is that Harris corners are rotation and transformation invariant. Even if
the corner is moved to a new place in the image, or is rotated by an angle, the algorithm will
still be able to detect the corner.
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Local Binary Patterns
The Local Binary Patterns (LBP) cascade is a type of cascade classifier that is used widely in
computer vision. But before we go any further into understanding LBP, let us first
understand what cascade classifiers in general are. Classifiers are like black boxes where we
input an image and the classifier outputs a label for the input image based on some model
(this is usually a model trained using a lot of training images). An example of a simple
classifier is a digit classifier that we will actually implement in Chapters 5, Integrating
Machine Learning with Computer Vision, and Chapter 6, Image Classification Using Neural
Networks. The word "cascade" means to form a chain of sorts. In the current context, it
means to make a chain of classifiers. Output of one classifier is passed onto as input to the
next classifier. Two famous examples of cascade classifier are Haar Cascades and Local
Binary Patterns (LBP). In this section, we will only look at LBP.

In LBP, an eight-bit binary feature vector is created for each pixel in the image by
considering the eight neighboring pixels (top-left, top-right, left, right, bottom-left, and
bottom-right). For every neighboring pixel, there is a corresponding bit, which is assigned a
value 1 if the pixel value is greater than the center pixel's value, otherwise it is 0. The eight-
bit feature vector is treated as a binary number (later convert it to a decimal value) and
using the decimal values for each pixel, a 256-bin histogram is computed. This histogram is
used as a representation of the image.

LBP features have some primitives coded in them, as shown in the following figure:

Figure 3: Example of texture primitives

Using the eight-bit binary feature vector that we described in the last paragraph we can
identify a set of primitives that are shown in the Figure 3. A hollow  circle implies that the
neighboring pixel was greater than the center pixel and a black filled circle means that the
neighboring pixel's value was more than the center pixel.
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The following piece of code implements the LBP cascade classifier:

from skimage.transform import rotate
from skimage.feature import local_binary_pattern
from skimage import data
from skimage.color import label2rgb
import numpy as np

# Get three different images to test the algorithm with
brick = data.load('brick.png')
grass = data.load('grass.png')
wall = data.load('rough-wall.png')

# Calculate the LBP features for all the three images
brick_lbp = local_binary_pattern(brick, 16, 2, 'uniform')
grass_lbp = local_binary_pattern(grass, 16, 2, 'uniform')
wall_lbp = local_binary_pattern(wall, 16, 2, 'uniform')

# Next we will augment these images by rotating the images by 22 degrees
brick_rot = rotate(brick, angle = 22, resize = False)
grass_rot = rotate(grass, angle = 22, resize = False)
wall_rot = rotate(wall, angle = 22, resize = False)

# Let us calculate the LBP features for all the rotated images
brick_rot_lbp = local_binary_pattern(brick_rot, 16, 2, 'uniform')
grass_rot_lbp = local_binary_pattern(grass_rot, 16, 2, 'uniform')
wall_rot_lbp = local_binary_pattern(wall_rot, 16, 2, 'uniform')

# We will pick any one image say brick image and try to find
# its best match among the rotated images
# Create a list with LBP features of all three images

bins_num = int(brick_lbp.max() + 1)
brick_hist = np.histogram(brick_lbp, normed=True, bins=bins_num, range=(0,
bins_num))

lbp_features = [brick_rot_lbp, grass_rot_lbp, wall_rot_lbp]
min_score = 1000 # Set a very large best score value initially
idx = 0 # To keep track of the winner

for feature in lbp_features:
    histogram, _ = np.histogram(feature, normed=True, bins=bins_num,
range=(0,bins_num))
    p = np.asarray(brick_hist)
    q = np.asarray(histogram)
    filter_idx = np.logical_and(p != 0, q != 0)
    score = np.sum(p[filter_idx] * np.log2(p[filter_idx] / q[filter_idx]))
    if score < min_score:
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        min_score = score
        winner = idx
    idx = idx + 1

if idx == 0:
    print('Brick matched with Brick Rotated')
elif idx == 1:
    print('Brick matched with Grass Rotated')
elif idx == 2:
    print('Brick matched with Wall Rotated')

Let us break down the preceding code. In the code, we are using Local Binary Patterns to
find the best match for a given image. For that we first load three different images provided
by Skimage—Brick, Wall, and Grass. After loading the images, we calculate the LBP
features for all the three images using the local_binary_pattern() function. The
parameters to this function are the radius and the number of points we want to consider
around any pixel in the image. We set a value of 2 and 16 for the radius and number of
points respectively. These are not definitive numbers and can be changed according to the
scenario. Once we have the LBP features for all the three images, we will rotate the original
images by a random angle (22 degrees in case of the preceding code).

We will now compute the LBP features for the rotated image and use these features to find
the best match for one of the original images. For our example, we use the brick image to
find its best match from the rotated image. In a for loop, we match the brick LBP feature
with all the rotated image features one by one. Then we calculate the Kullback Leibler
Divergence to compute the match score between the LBP features. The following lines of
code calculate the score:

p = np.asaray(brick_hist)
q = np.asarray(histogram)
filter_idx = np.logical_and(p != 0, q != 0)
score = np.sum(p[filter_idx] * np.log2(p[filter_idx] / q[filter_idx]))

Using this score, we find the best match.

Compared to Haar cascades, LBP cascades deal with integers rather than double values
because we just set the value to either 0 or 1. So, both training and testing is faster with LBP
cascades and hence is preferred while developing embedded applications. Another
important property of LBP is their tolerance against illumination variations.
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Oriented FAST and Rotated BRIEF (ORB)
Oriented FAST and Rotated BRIEF (ORB) was developed at OpenCV labs by Ethan
Rublee, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski in 2011, as an efficient and 
viable alternative to SIFT and SURF. ORB was conceived mainly because SIFT and SURF are
patented algorithms. ORB, however, is free to use.

ORB performs as well as SIFT on the task of feature detection (and is better than SURF),
while being almost two orders of magnitude faster. ORB builds on the well-known FAST
keypoint detector and the BRIEF descriptor. Both these techniques are attractive because of
their good performance and low cost. ORB's main contributions are as follows:

The addition of a fast and accurate orientation component to FAST
The efficient computation of oriented BRIEF features
Analysis of variance and correlation of oriented BRIEF features
A learning method for decorrelating BRIEF features under rotational invariance,
leading to better performance in nearest-neighbor applications

oFAST – FAST keypoint orientation
FAST is a feature detection algorithm that is widely recognized due to its fast computation
properties. It doesn't propose a descriptor to uniquely identify features. Moreover, it does
not have any orientation component, so it performs poorly to in-plane rotation and scale
changes. We will take a look at how ORB added an orientation component to FAST
features.

FAST detector
First, we detect FAST keypoints. FAST takes one parameter from the user, the threshold
value between the center pixel and those in a circular ring around it. We use a ring radius of
nine pixels as it gives good performance. FAST also produces keypoints that are along
edges. To overcome this, we use the Harris corner measure to order the keypoints. If we
want N keypoints, we keep the threshold low enough to generate more than N keypoints,
and then pick the topmost N based on the Harris corner measure.

FAST does not produce multiscale features. ORB employs a scale pyramid of the image and
produces FAST features (altered by Harris) at each level in the pyramid.
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Orientation by intensity centroid
To assign orientation to corners, we use the intensity centroid. We assume that the corner is
offset from the intensity centroid and this vector is used to assign orientation to a keypoint.

To compute the coordinates of the centroid, we use moments. Moments are calculated as
follows:

The coordinates of the centroid can be calculated as follows:

We construct a vector OC from the keypoint's center, O, to the centroid, C. The orientation
of the patch is obtained as follows:

Here, atan2 is the quadrant-aware version of arc tan. To improve the rotation in-variance of
this measure, we make sure that the moments are computed with x and y remaining within
a circular region of radius r. We empirically choose r to be the patch size so that x and y run
from [−r, r]. As |C| approaches 0, the measure becomes unstable; with FAST corners, we
have found that this is rarely the case. This method can also work well in images with
heavy noise.

rBRIEF – Rotation-aware BRIEF
BRIEF is a feature description algorithm that is also known for its fast speed of
computation. However, BRIEF also isn't invariant to rotation. ORB tries to add this
functionality, without losing out on the speed aspect of BRIEF. The feature vector obtained
by n binary tests in BRIEF is as follows:
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Steered BRIEF
The matching performance of BRIEF falls off sharply for in-plane rotation of more than a
few degrees. ORB proposes a method to steer BRIEF according to the orientation of the
keypoints. For any feature set of n binary tests at location (xi, yi), we need the 2 x n matrix:

We use the patch orientation θ and the corresponding rotation matrix Rθ, and construct a
steered version Sθ of S:

Now, the steered BRIEF operator becomes:

We discretize the angle to increments of 2π/30 (12 degrees), and construct a lookup table of
precomputed BRIEF patterns. As long as the keypoint orientation θ is consistent across
views, the correct set of points Sθ will be used to compute its descriptor.
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Variance and correlation
One of the properties of BRIEF is that each bit feature has a large variance and a mean near
0.5. A mean of 0.5 gives a maximum sample variance of 0.25 for a bit feature. Steered BRIEF
produces a more uniform appearance to binary tests. High variance causes a feature to
respond more differently to inputs.

Having uncorrelated features is desirable as in that case, each test has a contribution to the
results. We search among all the possible binary tests to find ones that have a high variance
(and a mean close to 0.5) as well as being uncorrelated.

ORB specifies the rBRIEF algorithm as follows.

Set up a training set of some 300 keypoints drawn from images in the PASCAL 2006 set.
Then, enumerate all the possible binary tests drawn from a 31 x 31 pixel patch. Each test is a
pair of 5 x 5 subwindows of the patch. If we note the width of our patch as wp = 31 and the
width of the test subwindow as wt = 5, then we have N = (wp − wt)2 possible subwindows.
We would like to select pairs of two from these, so we have  2 binary tests. We
eliminate tests that overlap, so we end up with N = 205,590 possible tests. The algorithm is
as follows:

Run each test against all training patches.1.
Order the tests by their distance from a mean of 0.5, forming the vector T.2.
Perform a greedy search:3.

Put the first test into the result vector R and remove it from T.1.
Take the next test from T and compare it against all tests in R. If its2.
absolute correlation is greater than a threshold, discard it; otherwise
add it to R.
Repeat the previous step until there are 256 tests in R. If there are fewer3.
than 256, raise the threshold and try again.

rBRIEF shows signicant improvement in the variance and correlation over steered BRIEF.
ORB outperforms SIFT and SURF on the outdoor dataset. It is about the same on the indoor
set; note that blob detection keypoints, such as SIFT, tend to be better on graffiti-type
images.

The following code implements ORB using skimage:

from skimage import data
from skimage import transform as tf
from skimage.feature import (match_descriptors, corner_harris,
 corner_peaks, ORB, plot_matches)
from skimage.color import rgb2gray
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import matplotlib.pyplot as plt

#Read the original image
image_org = data.astronaut()

#Convert the image gray scale
image_org = rgb2gray(image_org)

#We prepare another image by rotating it. Only to demonstrate feature
mathcing
image_rot = tf.rotate(image_org, 180)

#We create another image by applying affine transform on the image
tform = tf.AffineTransform(scale=(1.3, 1.1), rotation=0.5,
 translation=(0, -200))
image_aff = tf.warp(image_org, tform)

#We initialize ORB feature descriptor
descriptor_extractor = ORB(n_keypoints=200)

#We first extract features from the original image
descriptor_extractor.detect_and_extract(image_org)
keypoints_org = descriptor_extractor.keypoints
descriptors_org = descriptor_extractor.descriptors

descriptor_extractor.detect_and_extract(image_rot)
keypoints_rot = descriptor_extractor.keypoints
descriptors_rot = descriptor_extractor.descriptors

descriptor_extractor.detect_and_extract(image_aff)
keypoints_aff = descriptor_extractor.keypoints
descriptors_aff = descriptor_extractor.descriptors

matches_org_rot = match_descriptors(descriptors_org, descriptors_rot,
cross_check=True)
matches_org_aff = match_descriptors(descriptors_org, descriptors_aff,
cross_check=True)

fig, ax = plt.subplots(nrows=2, ncols=1)

plt.gray()

plot_matches(ax[0], image_org, image_rot, keypoints_org, keypoints_rot,
matches_org_rot)
ax[0].axis('off')
ax[0].set_title("Original Image vs. Transformed Image")

plot_matches(ax[1], image_org, image_aff, keypoints_org, keypoints_aff,
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matches_org_aff)
ax[1].axis('off')
ax[1].set_title("Original Image vs. Transformed Image")

plt.show()

In the preceding code, we match the ORB features extracted from the original image with a
rotated version of the same image and a fine-wrapped image. This demonstrates how ORB
features are invariant to transformations such as rotation, change in scale, and perspective.

The following is the output of the preceding code:

Figure 4: The top image shows feature matching between the original image and a rotated version of the same image, while the image at the bottom shows feature matching
between the original image and an affine transformed version
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Image stitching
Most mobile phone cameras today have the feature of capturing a panorama shot. Ever
wondered how it works? Panorama images are based on the concept of image stitching,
where we capture multiple overlapping images and join them together my matching the
common parts of the images. To further illustrate this look at Figure 5. Both images shown
in the figure have a common region between them. Our task in this section is to stitch the
images together to form one bigger image:

 

Figure 5: We want to combine these two images to form a bigger image. Notice the common area between the images. Common area will be used to stitch the images.

Image stitching is an interesting application of image feature extraction and matching. Let
us use the knowledge we gained in the previous sections and apply it to a real-life situation.
To stitch two images together, the first thing is to find common points between the images.
As in Figure 5, we want to match the tip of the pillar holding the bridge in the two images.
Similarly we want to match as many points as possible. Once we have the matching points,
we want to align the two images on top of each other using the matched points. In the last
section, we saw how ORB was able to extract features in an image and find corresponding
features in another image of the same object. We will use the same technique to find these
matching points.
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The following code given stitches the two images together and outputs a combined image
(see Figure 5):

from skimage.feature import ORB, match_descriptors
from skimage.io import imread
from skimage.measure import ransac
from skimage.transform import ProjectiveTransform
from skimage.color import rgb2gray
from skimage.io import imsave, show
from skimage.color import gray2rgb
from skimage.exposure import rescale_intensity
from skimage.transform import warp
from skimage.transform import SimilarityTransform
import numpy as np

image0 = imread('goldengate1.png')
image0 = rgb2gray(image0)

image1 = imread('goldengate2.png')
image1 = rgb2gray(image1)

orb = ORB(n_keypoints=1000, fast_threshold=0.05)

orb.detect_and_extract(image0)
keypoints1 = orb.keypoints
descriptors1 = orb.descriptors

orb.detect_and_extract(image1)
keypoints2 = orb.keypoints
descriptors2 = orb.descriptors

matches12 = match_descriptors(descriptors1,
 descriptors2,
 cross_check=True)

src = keypoints2[matches12[:, 1]][:, ::-1]
dst = keypoints1[matches12[:, 0]][:, ::-1]

transform_model, inliers = \
 ransac((src, dst), ProjectiveTransform, min_samples=4,
residual_threshold=2)

r, c = image1.shape[:2]

corners = np.array([[0, 0],
 [0, r],
 [c, 0],
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 [c, r]])

warped_corners = transform_model(corners)

all_corners = np.vstack((warped_corners, corners))

corner_min = np.min(all_corners, axis=0)
corner_max = np.max(all_corners, axis=0)

output_shape = (corner_max - corner_min)
output_shape = np.ceil(output_shape[::-1])

offset = SimilarityTransform(translation=-corner_min)

image0_warp = warp(image0, offset.inverse, output_shape=output_shape,
cval=-1)

image1_warp = warp(image1, (model_robust + offset).inverse,
output_shape=output_shape, cval=-1)

image0_mask = (image0_warp != -1)
image0_warp[~image0_mask] = 0
image0_alpha = np.dstack((gray2rgb(image0_warp), image0_mask))

image1_mask = (image1_warp != -1)
image1_warp[~image1_mask] = 0
image1_alpha = np.dstack((gray2rgb(image1_warp), image1_mask))

merged = (image0_alpha + image1_alpha)
alpha = merged[..., 3].
merged /= np.maximum(alpha, 1)[..., np.newaxis]

imsave('output.jpg', merged)

In the preceding code, we read the two images shown in Figure 5 into image0 and image1
variables. After that, the first thing we do is to find ORB features in the two images (see the
last section for details on the ORB algorithm). Once we have computed the ORB features for
the two images, we match the features from the two images. The matching features are
stored in the matches12 variable. In the next two lines, we extract the matching features
from the two images and store them in src and dst variables.

src = keypoints2[matches12[:, 1]][:, ::-1]
dst = keypoints1[matches12[:, 0]][:, ::-1]
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The next task is to find a projection model that will calculate the project of the destination
image over the source image. What this means is that we want to know how the destination
image align with the source image. It could happen that the destination image is rotated by
30 degrees. Using the projection transformation, we will know that we have to rotate the
destination image by 30 degrees in the opposite direction to align it with the source image.
Now we compute the size of the final image after stitching the two images by estimating the
size of the overlapping part of the images. For that we take the difference between the two
farthest matching corner points. The difference of the corner points is stored in out_shape.
Further, we warp the images according to the projection transformation that we computed
earlier. Warping an image means to distort the image in a particular way. For example, in
our case we will warp the image by shrinking the matching side of the two images (you will
notice this in the final result—Figure 6). Finally, we add the two warped images together
after adding the alpha channels to the images. Alpha channels are added to make the two
images blend together properly. The final output of the preceding code is shown in Figure 6:

Figure 6: The stitched version of the two images shown in Figure 5
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For this example, we used only two images, but this technique can be extended to stitch as
many overlapping images we want. The technique will remain the same. This is also how
your mobile phone camera captures a panorama shot.

Summary
In this chapter, we looked at different feature detection algorithms such as Harris Corner
Detection, Local Binary Classifiers, and ORB. These algorithms make it possible to perform
image matching in a real-world scenario. Algorithms such as LBP, ORB compute features in
an image that are insensitive to rotation, translation, and other minor distortions. Detecting
corners in an image is helpful in applications such as image stitching where we want to
correlate two images by finding the same points in different images. In the next chapter, we
will look at image segmentation and its applications.



4
Segmentation - Understanding

Images Better
In the previous chapter, we looked at techniques to find image features that help us
describe various objects in the images. We also looked at Haar Cascades that helped us to
detect faces in images. An interesting thing about these algorithms was their local nature.
All algorithms look at points in their neighborhood to mark a certain pixel as a feature
pixel. In this chapter, we will take things a bit further and try to analyze a given picture
from a different perspective. We will look at techniques that will help us look at larger
regions of the image and draw meaningful conclusions from that. This will help us segment
images into regions such as background, foreground, water region, and grass region.

The following is the list of algorithms and techniques that we will look at in this chapter:

Contour detection
Watershed algorithm
Superpixels
Graph cut
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Introduction to segmentation
What exactly do we mean by segmentation? Segmenting an image is the process of breaking
down an image into smaller regions that individually hold meaningful information and
help us understand the overall content of the image. For example, let's take a look at the
following images (Figure 1). On the left you see the original image and on the right there is
the corresponding segmented image. As we can see, the algorithm was successful in
grouping together similar parts of the image. Like the entire background with bushes was
grouped to dark green color. The yellow grass and the grass in front of the animal was
colored as one. Throughout the chapter, we will look at different techniques that will help
us achieve similar results. Not all techniques will work in all situations, so it is helpful to
know a couple of techniques:

Figure1: Left and right images show the original and the segmented image respectively
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Before we look into each algorithm specifically, a nice observation is how all of these
algorithms internally use clustering of pixels based on their color values. The only
difference between these algorithms is the parameters that are used for clustering. Some use
just the Euclidean distance and some use more complicated formulas that we will see in the
coming sections. 

Contour detection
Let's start with one of the easiest techniques of segmentation—contours. Simply put,
contours are nothing but boundaries of objects in an image. Say, for example, you have
different types of bottles in an image and you want to segment out each one of them. The
contour detection algorithm will try to trace out the boundaries for each bottle and form a
closed loop. Each closed loop in the image represents a contour. You might wonder, aren't
contours similar to edges? There is a very subtle difference between them—contours always
form closed loops whereas edges can remain open. A contour detection algorithm will try to
group edges together that will result in a closed loop.

The following is the code used to extract contours in an image. For better results, we first
convert the image to grayscale and run a sobel edge detection over it:

from skimage import measure
from skimage.io import imread
from skimage.color import rgb2gray
from skimage.filters import sobel
import matplotlib.pyplot as plt

#Read an image
img = imread('contours.png')

#Convert the image to grayscale
img_gray = rgb2gray(img)

#Find edges in the image
img_edges = sobel(img_gray)

#Find contours in the image
contours = measure.find_contours(img_edges, 0.2)

# Display the image and plot all contours found

fig, ax = plt.subplots()
ax.imshow(img_edges, interpolation='nearest', cmap=plt.cm.gray)

for n, contour in enumerate(contours):
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    ax.plot(contour[:, 1], contour[:, 0], linewidth=2)

ax.axis('image')
ax.set_xticks([])
ax.set_yticks([])

plt.show()

An example output is shown next:

Figure 2: This shows the output (right) of running contour detection over an image (left)

As we can see, the algorithm was able to detect the circle and the square perfectly. The two-
color boundary that you see in the output consists of the inner and the outer edges for each
shape.

As the image gets more complicated, the results are not that good. You can try an
experiment with Lenna’s image and see the results yourself. So how do we tackle more
complicated images? Simple! By using more sophisticated algorithms. Let's look at the
Watershed algorithm next.
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The Watershed algorithm
This is an interesting algorithm in the sense that it draws analogy from the physical world.
The most common way in which this algorithm is explained in research papers and other
texts is in comparison to geographical reliefs. Imagine an area which has a lot of craters (the
surface of the moon, for example) and we want to fill each of these craters with water of
different colors. We initially start with marking the center of each crater and then keep
filling the crater with colored water until the water level reaches to a point where it just
touches the boundary of an adjacent crater (assume all craters are close by). After we have
filled all craters with colored water, we have successfully segmented out each crater on our
surface. Simple enough!

Now, let's try to imagine this in the world of images. To begin with, imagine that your
image is the surface that we are trying to segment. All the objects, background, and
foreground in the image are craters. As we know, our next task is to identify the center of
each of these craters (essentially objects, background, and foreground). Here is the trick—in
images, it is not so easy to identify the center of the objects because if we knew what our
object was, I probably would not have written this chapter! So how do we solve this
problem? We find out the local gradients of the image. By doing so, we will identify all the
local minimums in our images. These local minimums will give us an approximate idea of
where the objects could possibly be located. In technical terms, these local minimums are
called markers. We assign each marker with a unique color and then start filling these
colors until we reach the boundary of an adjacent marker.
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While doing so we were essentially filling out the objects/regions in the image with a
unique color. Let's look at the output of the algorithm to have a better understanding:

Figure 3: A step-by-step (left to right) illustration of the Watershed algorithm

A step-by-step explanation of the algorithm is as follows:

Read the image that you want to segment.1.
Convert it into grayscale (only if it is not in grayscale already).2.
Convert the image pixel values to unsigned int using the img_as_ubyte()3.
function. This is because the gradient function expects the image in a certain
format.
Calculate the local gradients of the image.4.
Apply the Watershed algorithm.5.
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The following is the code for the Watershed algorithm:

from scipy import ndimage as ndi
from skimage.morphology import watershed, disk
from skimage import data
from skimage.io import imread
from skimage.filters import rank
from skimage.color import rgb2gray
from skimage.util import img_as_ubyte

img = data.astronaut()
img_gray = rgb2gray(img)

image = img_as_ubyte(img_gray)

#Calculate the local gradients of the image
#and only select the points that have a
#gradient value of less than 20
markers = rank.gradient(image, disk(5)) < 20
markers = ndi.label(markers)[0]

gradient = rank.gradient(image, disk(2))

#Watershed Algorithm
labels = watershed(gradient, markers)

The output label contains the pixel-wise label of which object that pixel belongs to.

The watershed algorithm was an improvement over the contour detection algorithm that
we saw in the last section. But this is not it. We can further improve the results of
segmentation by using k-means clustering and finally using a graph cut over the clusters.

Superpixels
Images are always dealt with by the granularity of a pixel. But this can sometimes be
computationally expensive. You do not always want to iterate through all the pixels in the
image. As an attempt to remove redundancy in the pixels of an image, we try to combine
pixels closer to each other that have the same color value into a cluster and then call those
clusters superpixels. The advantage of doing this is that now instead of going through a few
pixels we just go through one superpixel, which is nothing but a combination of these
pixels.
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The following code computes the superpixels in an image:

from skimage import segmentation, color
from skimage.io import imread
from skimage.future import graph
from matplotlib import pyplot as plt
img = imread('test.jpeg')

img_segments = segmentation.slic(img, compactness=20, n_segments=500)
superpixels = color.label2rgb(img_segments, img, kind='avg')

The following is the output of the preceding code:

Figure 4: The original image on the left and the superpixels image on the right

As we can see in the output, pixels that were of a similar color and close to each other were
clustered together into one blob of mean color. Each of these blobs are called superpixels.
Superpixels are used as the starting point for many image segmentation algorithms as they
increase the efficiency of the algorithms. An example is a graph cut technique that we will
look at in the next section. It uses superpixels to form a graph.
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Normalized graph cut
This is one of the most popular image segmentation techniques today. The simplest
explanation of the graph cut technique is that each pixel in the image is treated as a node.
Apart from these nodes, we have some extra nodes that each represent, say an object in the
image. All the pixels are connected to all of its adjacent pixels and each to the object nodes.
The following diagram will make the explanation more clear:

Figure 5: How the graph cut algorithm works--an image graph is created and using it the seed cuts are made in the graph. As a result, we get a well-segmented image

After we have defined our graph, we iteratively start cutting the edges in the graph to
obtain subgraphs. After a certain time, we will reach a point where we cannot further cut
the graph into subgraphs and that is when we say that we have completed segmenting our
image. The result of this would be that each pixel in the image will be connected to one
object (defined earlier). This way we can label each pixel in the image to which object it
belongs. The interesting part of the algorithm is deciding what edges should be cut in the
process. There are many different ways of cutting the edges and each works well for certain
types of images. For the purpose of this book, we will look at normalized cuts.
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The normalized cuts technique was published in the paper: Shi, J.; Malik, J.,“Normalized
cuts and image segmentation”, Pattern Analysis and Machine Intelligence, IEEE
Transactions, vol. 22, no. 8, pp. 888-905, August 2000

Understanding the exact algorithm is beyond the scope of this book, but if you are curious,
you should read the aforementioned paper.

The following is a step-by-step explanation of the implementation using scikit-image:

Read the image.1.
Perform k-means clustering over color values. In our implementation, we use the2.
SLIC method for clustering.
Using the clustered pixels from the previous step, we create a weighted graph3.
over these clusters. The weight of each edge is determined by how similar two
regions are.
We apply the normalized graph cut technique over the graph obtained in the last4.
step.

Although the algorithm seems quite easy, if we try to implement it from scratch the
mathematics behind it can get really complicated. But we need not worry. Scikit-image
provides out-of-the-box functions for each of these steps. Phew!

The following is the code for this algorithm:

from skimage import data, segmentation, color
from skimage.io import imread
from skimage import data
from skimage.future import graph

img = data.astronaut()
img_segments = segmentation.slic(img, compactness=30, n_segments=200)
out1 = color.label2rgb(img_segments, img, kind='avg')

segment_graph = graph.rag_mean_color(img, img_segments, mode='similarity')
img_cuts = graph.cut_normalized(img_segments, segment_graph)
normalized_cut_segments = color.label2rgb(img_cuts, img, kind='avg')

The preceding code is pretty straightforward. Let's look at two functions
graph.rag_mean_color and graph.cut_normalized in detail.
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graph.rag_mean_color is used to generate the graph of clusters that we got by using the
k-means clustering (see step 2). This function takes in the clusters and a mode as input to
generate the graph. The mode can have two values: distance and similarity. Distance is
nothing but the Euclidian distance between the mean color of the two clusters. It calculates 
the weight using the following formula:

Here, d = | c1 - c2 |
where sigma is a constant provided by the user, and c1 and c2 are the mean color values of
the two clusters.

graph.cut_normalized is the implementation of the research paper mentioned earlier.
The exact documentation of the parameters can be found at
http://scikit-image. org/ docs/ dev/ api/ skimage. future. graph. html#skimage. future.
graph.cut_normalized. 

A sample output of the code is as follows:

Figure 6: To the left is the original image and to the right is the segmented image
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As you can see this technique outperforms all other techniques that we have discussed so
far. Let's try to look closely at the output. We can observe that a part of the hat is same in
color with the background wall. The algorithm beautifully combines them as one. Also, if
we look at the face, as we go down from the forehead of the person towards the nose, we
can see a gradual change in the color. The algorithm was able to pick up this change. We
can play around with the parameters however we want and get a result that suits best to
our need.
Almost all computer vision algorithms that we have seen so far are driven by manual
tuning of certain parameters. This is often a bottleneck when you are trying to build
computer vision applications for the real world, where you have limited knowledge of the
kind of image that your system might encounter. It can so happen that the parameters that
you have set in your system work exceptionally well for the input image, but don’t be
surprised if it completely fails. This problem is being handled by researchers using machine
learning. In the coming chapters, we will see how machine learning helps us to avoid
dealing with manual parameters and makes our computer vision systems more robust and
relevant for the real world.

Summary
In this chapter, we looked at different image segmentation algorithms, namely, contour
detection, superpixels, watershed, and normalized graph cut. These algorithms are fairly
easy to implement and run almost real time. Image segmentation has tremendous use in
real-world applications like background subtraction, image understanding, and scene
labeling. Recent advances in machine learning, especially deep learning, have enabled more
sophisticated ways of image segmentation that involve almost no manual tuning of
parameters.

In the coming chapters, we will look at some of the machine learning techniques and how
they are relevant to computer vision.



5
Integrating Machine Learning

with Computer Vision
Machine learning is one of the most studied topics in computer science. Every major
technology company is spending a sizable amount of their budget on advancing the state of
the art for tasks such as image classification, object recognition, and more complex tasks
such as activity recognition. In this chapter, we lay the foundation of machine learning in
the context of computer vision. We will learn about basic algorithms such as linear
regression, support vector machines, and decision trees, while keeping in mind the task of
image classification (handwriting recognition). In this chapter, we will also look at a new
open source library, sklearn.

Let's begin by understanding the various applications of machine learning for computer
vision and then look at specific algorithms.

The following topics will be covered in this chapter

Introduction to machine learning and sklearn
Applications of machine learning
Logistic regression
Support vector machines
K-means clustering
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Introduction to machine learning
As we saw in the previous section, a system is capable of learning handwriting,
understanding an image, or even make a car drive on its own. But how does all of this
happen? Let's take an example of detecting different shapes such as circles, squares, and
rectangles. We begin with collecting a lot of images for these shapes in different colors and
sizes. We should try to have as much diversity in our data as possible. Then we pass this
data to our program and, using a machine learning algorithm, it learns what different
shapes look like by specifically learning about their characteristic properties such as a circle
has no corners, while a square and a rectangle both have four corners, but a square has all
its sides of equal length. All of this happens within the algorithm and the developer is not
required to learn about these specific properties. Once the program has learned about these
shapes, we can now give an unknown shape as input to the program and it will give as
output the correct name for that shape.

The concept is fairly simple to understand, but certain sophisticated algorithms require
rigorous understanding of mathematics to make sense of what they are doing. The task of
learning shapes is an example of supervised machine learning where we give the data and
its corresponding label as input to the system to learn. It is like showing an image of a circle
and then telling the computer that this is a circle (the same as how you learned about
shapes back in preschool). Another vertical of machine learning is unsupervised machine
learning, where we only provide the data without any labels to the system and it implicitly
tries to group data that it feels belongs to the same label/category. In this book, we will only
look at algorithms from both verticals.

An important aspect of machine learning is the training data--the data through which we
make the system learn. The quality and quantity of the data both matter equally. If there is
not enough data, you will never be able to make the system robust. If you do not have
quality data, say you have almost similar data without much diversity or variation, the
system might just end up memorizing the data and may not be able to infer new/unknown
data. There are a lot of openly available datasets for various tasks. Some of the famous ones
are CIFAR and IMAGENET for image classification.

Another important aspect of machine learning is data preprocessing. Let's look at it in more
detail.
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Data preprocessing
Data preprocessing plays an important role in machine learning. Suppose you are given
images of any object that you are trying to learn and all the images are aligned vertically.
When after the learning phase you pass an image of the same object at an angle, there are
chances that program will not be able to detect what the object is. You could also learn the
object with a certain size, but while testing you provide an image with the object either
smaller or bigger than what we trained it for. These are just some of the many problems that
you can face in terms of the training data. A more formal term used to describe such
artifacts is called making an object invariant to translation, rotation, and scale. This means
no matter where the object is in the image, at what orientation, and how small or big the
object is, the program will be able to detect the object correctly. In this section, we will list
some of the preprocessing steps that you can take to make the program more robust.

Image translation through random cropping
Image translation means that the X, Y position of the image changes in the input image. For
example, we train our program with images of a pen at the center of the image and while
testing (giving an unknown image as input), we give an image with pen at one of the
corners of the image. As we read earlier, it is possible that the program might not detect the
object as a pen. To tackle this problem, we try to move the object to different positions in the
image by randomly cropping the image at different positions.

Image rotation and scaling
This is similar to image translation, only this time we rotate a given image with random
angles. This helps the program to learn the object at different orientations. We also scale the
image and make it smaller or bigger before we pass it to our machine learning program.

These simple techniques are a way of artificially expanding the original datasets and go a
long way in making the program more robust and invariant. There are other preprocessing
techniques such as color averaging that could be used too.

But before diving into machine learning algorithms, let's install a new library that we will
use in this chapter—scikit-learn.
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Scikit-learn  (sklearn)
Like scikit-image, scikit-learn is another open source library that provides easy-to-use APIs
for most of the machine learning algorithms that we are going to use in this chapter. 

Installing sklearn is fairly simple. The following steps show how to install it on various
platforms:

Windows: Since you have pip installed already (hopefully you installed scikit-
image during the first chapter), run the following command in your terminal.

        pip3 install sklearn

To verify you have successfully installed sklearn, run the following
command in your terminal:

        python3 -c "import sklearn"

If you see no errors, you are good to go.

Linux/macOS: Both Linux and macOS have the same steps to install sklearn.
Assuming you have pip installed already, run the following command in your
Terminal window:

        pip3 install sklearn

To verify you have successfully installed sklearn, run the following
command in your Terminal:

        python3 -c "import sklearn"

If you see no errors, you are good to go.

Applications of machine learning for
computer vision
Machine learning is used in situations when we want the computer to operate, infer
situations, or make decision without any human intervention. Just like a human being, to
make a computer capable of these features, we need to make the computer learn these
situations in advance before the computer can understand these situations independently.
An example of this could be to recognize faces in an image.
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We need to tell the computer in advance what is a face what  it looks like, and what are
some specific features that can help us detect a face in an image. The following are some
more examples:

Handwriting recognition: This is one of the most common applications of
machine learning in computer vision. This finds use in number plate detection,
building applications that can translate sign boards written in a language you do
not know, and more.
Image detection and classification: Here we try to identify where in the image is
an object (detection) and what is the object that is being shown in the image
(classification). Is it a mobile phone, a car, or a pen. Many online retail e-
commerce websites now have a feature where you click an image of an object and
it looks for it on their platform. This is nothing but image classification. We will
look at this in the next chapter in more detail regarding how these applications
are built.
Scene labeling: An interesting application of machine learning in the context of
computer vision, is where given an image the computer tries to label the image.
For example, a working machine learning system labeled the following image as
a baseball player swinging a bat on a field:

Figure 1: Autogenerated caption using machine learning - "a baseball player swinging a bat on a field" Image source: http:/ /cs.stanford. edu/
people/ karpathy/ neuraltalk2/ demo. html
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Self-driving cars: Using machine learning and computer vision, researchers and
technology companies are building autonomous cars that can navigate their way
through traffic and obey traffic rules. These cars are fitted with cameras that
continuously monitor their surroundings and detect people, cars, and other
objects on roads. A lot of different concepts that we have seen so far come
together to build a system like this.

Logistic regression
Given a set of data points (in multiple dimensions), logistic regression tries to fit a curve
between the data points that best represent it. A more formal definition is; it is a technique
that finds relationships between a set of independent variables and a dependent
variable—here, the independent variables being the input data and the dependent variable
being the labels corresponding to the data. The mathematics behind logistic regression
involves probability. Given a data point, we calculate the probability of that data point
belonging to a particular label.

Using logistic regression, let's try to build a digit classification program. Given an image of
a digit, it will output what digit it is. For this task, we will use the MNIST dataset. MNIST
has 60,000 training samples and 10,000 testing samples of digit images each 28 x 28 in size.
The official website for the dataset is http:/ / yann. lecun. com/ exdb/ mnist/ .

The following is an image showing a sample of the MNIST dataset:

Figure 2: A few examples of digits from the MNIST Dataset
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The following is a code for logistic regression using sklearn:

from sklearn import datasets, metrics
from sklearn.linear_model import LogisticRegression

mnist = datasets.load_digits()

images = mnist.images

data_size = len(images)

#Preprocessing images
images = images.reshape(len(images), -1)
labels = mnist.target

#Initialize Logistic Regression
LR_classifier = LogisticRegression(C=0.01, penalty='l1', tol=0.01)

#Training the data on only 75% of the dataset. Rest of the 25% will be used
in testing the Logistic Regression
LR_classifier.fit(images[:int((data_size / 4) * 3)], labels[:int((data_size
/ 4) * 3)])

#Testing the data
predictions = LR_classifier.predict(images[int((data_size / 4)):])
target = labels[int((data_size/4)):]

#Print the performance report of the Logistic Regression model that we
learnt
print("Performance Report: \n %s \n" %
(metrics.classification_report(target, predictions)))

Yes, that's it! All that we read until now about machine learning, we could do that in about
30 lines of code. Let's break down the code.

We first load the dataset using  datasets.load_digits(). Sklearn has a module called
datasets that makes it easy for the developer to use standard datasets such as MNIST
without having the problem of downloading the dataset manually and preprocessing it for
your use. 
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After loading the dataset, we transform the images in a way that is compatible to the input
of the logistic regression module. The MNIST dataset by default is in a 2D array (like a
matrix) but the logistic regression module only accepts arrays in 1D. For that we reshape
the array using images.reshape(len(images), -1). Once we have the shape of the
input in the correct format, we can pass out digits and labels into the logistic regression
module. We define a new object for LogisticRegression and set the hyper parameters
(tolerance, inverse of regularization strength, and more). It's OK if you do not understand
all the hyper parameters. It can be a bit overwhelming to understand all of them. Play
around with the values and you will get a feel of what works for your task and what
doesn't. 

In our code, we divide the given MNIST dataset into 75-25, where we use 75% of the images
for training and the remaining 25% for testing. There are no rules to this ratio. You can even
use 50-50 for your task. In the preceding code, this line does the actual training for
us: LR_classifier.fit(images[:int((data_size / 4) * 3)],
labels[:int((data_size / 4) * 3)]). After we complete the training phase, we are
in a position to test how well the program learned the digits. We test our program by
getting the predictions on the remaining 25% images that we had earlier kept aside for
testing. This line gets the predictions for us: predictions =
LR_classifier.predict(images[int((data_size / 4)):]). 

After we have the predictions, we get some numbers on our result using
metrics.classification_report(target, predictions). Here is the output of
running of this program:

Performance Report:
                     precision    recall  f1-score   support
          0            0.94         0.99      0.97       131
          1             0.91         0.88      0.90       137
          2            0.98         0.97      0.97       131
          3            0.97         0.87      0.91       136
          4            0.98         0.94      0.96       139
          5            0.94         0.97      0.96       136
          6            0.97         o.97      0.97       138
          7            0.93         0.97      0.95       134
          8            0.86        0.82      0.84       130
          9            0.81         0.90      0.86       136
avg / total           0.93         0.93      0.93      1348

We can see for each digit how well the logistic regression worked.
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But wait! Where did we use actual images here? Can we not provide our own handwritten
image and see what the programs output? Yes, we can certainly do that, and the following
code shows how to use a custom image and make the logistic regression predict the digit:

from sklearn import datasets, metrics
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from skimage import io, color, feature, transform

mnist = datasets.load_digits()
images = mnist.images
data_size = len(images)

#Preprocessing images
images = images.reshape(len(images), -1)
labels = mnist.target

#Initialize Logistic Regression
LR_classifier = LogisticRegression(C=0.01, penalty='l1', tol=0.01)

#Training the data on only 75% of the dataset. Rest of the 25% will be used
in testing the Logistic Regression
LR_classifier.fit(images[:int((data_size / 4) * 3)], labels[:int((data_size
/ 4) * 3)])

#Load a custom image
digit_img = io.imread('digit.png')

#Convert image to grayscale
digit_img = color.rgb2gray(digit_img)

#Resize the image to 28x28
digit_img = transform.resize(digit_img, (8, 8), mode="wrap")

#Run edge detection on the image
digit_edge = feature.canny(digit_img, sigma=5)

digit_edge = digit_edge.flatten()

#Testing the data
prediction = LR_classifier.predict(digit_edge)

print(prediction)
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Most of the code that you see here is similar to the code snippet prior to this one. In this
code snippet, we add the functionality for the user to load a custom image and pass it
through the logistic regression module. There is a bit of preprocessing that needs to be done
before you can use the image. We first convert the image into grayscale and resize it to 8 x 8.
Then we compute edges using the canny edge detector (you can use whatever edge
detection technique you want).

The following diagram was used to test the preceding code:

Figure 3: This is a test image of digit 6; it is written with a pencil on a yellow post-it (sticky note)

Support vector machines
Another widely used supervised machine learning algorithm is support vector machines.
Like in logistic regression, we tried to fit a curve that passes through the data points, but in
SVMs we try to find hyperplanes that divide the given data into regions, with each region
representing a particular label.

What are hyperplanes? They are nothing but a generalization of a plane. For example, in
one-dimension, it is a point, in two-dimensions, it is a line, in three-dimensions, it is a plane,
and for even higher dimensions, we just call them hyperplanes.
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The following diagram provides a visual of how linear SVMs work:

Figure 4: Hyperplanes (green lines) divide the dataset into appropriate regions; these hyperplanes divide the red squares and blue circles into separate regions on the graph

Image source: http:/ / docs. opencv. org/ 2.4/_ images/ separating- lines. png 

Given a set of data points, we find hyperplanes for each of the labels and further optimize
them to reduce any generalization errors. If we have n labels in our data, we will try to find
n-1 hyperplanes that separate the labels. The mathematics behind support vector machines
is beyond the scope of this book, but the ones who are interested can read the following
blog post: https:// www. svm- tutorial. com/ 2017/ 02/svms- overview- support- vector-
machines/.

Let's apply SVMs for the same task of digit classification. The following code implements
classification using SVMs:

from sklearn import datasets, metrics, svm

mnist = datasets.load_digits()

images = mnist.images

data_size = len(images)

#Preprocessing images
images = images.reshape(len(images), -1)
labels = mnist.target

#Initialize Support Vector Machine
SVM_classifier = svm.SVC(gamma=0.001)
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#Training the data on only 75% of the dataset. Rest of the 25% will be used
in testing the
Support Vector Machine
SVM_classifier.fit(images[:int((data_size / 4) * 3)],
labels[:int((data_size / 4) * 3)])

#Testing the data
predictions = SVM_classifier.predict(images[int((data_size / 4)):])
target = labels[int((data_size/4)):]

#Print the performance report of the Support Vector Machine model that we
learnt
print("Performance Report: \n %s \n" %
(metrics.classification_report(target, predictions)))

As you can see, this is quite similar to the one we wrote for logistic regression. The only
major change here is the classifier. We use svm.SVC instead. We divide the data into a
training set and test set. The result of the preceding code can be seen as follows:

Performance Report:
              precision    recall  f1-score   support
          0       1.00      0.99      1.00       131
          1       0.99      1.00      1.00       137
          2       1.00      1.00      1.00       131
          3       0.99      0.95      0.97       136
          4       0.99      0.98      0.99       139
          5       0.98      0.99      0.99       136
          6       0.99      1.00      1.00       138
          7       0.99      1.00      1.00       134
          8       0.96      0.99      0.98       130
          9       0.99      0.99      0.99       136
avg / total       0.99      0.99      0.99      1348

We can modify this code to take as input a custom image, as we did earlier for logistic
regression. It will be a good exercise to modify the code to make it work for your needs.

Just a side note, support vector machines are known to perform very well with high
dimensional data.
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You might wonder what happens if the data that is provided to SVMs is not linearly
seperable? Can we not use SVMs for such datasets? The answer is we can. There are many
variations in SVMs that are capable of finding nonlinear hyperplanes that perform quite
well. Just to give you an example, sklearn in its official documentation shows the variations
in SVMs. The following screenshot is taken from the sklearn documentation that illustrates
different SVMs:

Figure 5: Different versions of SVMs where the data is not really linearly separable

The svm.SVC function provides an option to select the kind of hyperplanes that we want to
compute. The kernel parameter in the function can take values such as linear, poly, rbf,
or sigmoid. By default, it uses rbf. These different kernel choices help the user in finding
the most appropriate kernel for the kind of data that they are dealing with. If we know that
our data is linearly separable, then we can opt for a linear kernel, otherwise use a
nonlinear kernel. 

Just to aid your understanding of support vector machines, let us visualize the digits data
that we used for training our SVM. The images in the MNIST dataset are 28x28, which
makes it data 784 dimensions. Does this mean we can never visualize such data? To solve
this problem, we use dimensionality reduction. This helps us in converting a 784-D data to
2-D or 3-D which then makes it possible to visualize.
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One of the common dimensionality reduction techniques is Principle Component Analysis.
The following code will convert the MNIST data into a reduced dimension data:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, decomposition

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target
n_samples, n_features = X.shape
n_neighbors = 30

X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X)

fig, plot = plt.subplots()
plot.scatter(X_pca[:, 0], X_pca[:, 1])
plot.set_xticks(())
plot.set_yticks(())

The output of the code is as follows:

Figure 6: How different digits group together. It is because of this grouping that SVMs are successful in classifying them with high accuracy.
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In Figure 6, we can see how similar digits are positioned in close proximity to each other.
Just by visual inspection, we are able to draw rough lines between different regions
occupied by the digits. This implicit grouping of digits helps machine learning techniques
such as SVM, logistic regression and even K-means ( we will read about this in the next
section) to perform classification with such high accuracy.

Apart from PCA, there are other techniques such as t-SNE that do a much better job at
helping visualize data. The following code can be used to for t-SNE:

tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(X)

Instead of using PCA in the previous code snippet, you can replace it by the preceding code
snippet. The output for t-SNE is the following:

Figure 7: Output using t-SNE visualization algorithm
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Figure 7 shows the grouping between the digits in a much clearer way. Data visualization is
very important when we want see how our data exactly is positioned in the higher
dimensions. This helps us in making the right decision about the kind of machine learning
techniques that we want to use.

K-means clustering
K-means clustering is a type of semi-supervised or unsupervised machine learning, which
works with partially labeled or even unlabeled data. As the name suggests, this is a type of
clustering algorithm, which tries to form clusters of data points based on a similarity
function. This algorithm is quite often confused with k-nearest neighbors. Although both
algorithms share the same spirit, they are different from each other.

In k-means clustering, we form k clusters using the given data points based on a similarity
metric. The most common form of a similarity metric is the distance between two points in
the given space. Points closer to each other are clustered together. Initially, when the
algorithm begins, we randomly select k points that represent the center of each of the k
clusters. Then, iteratively, we keep updating these k center points such that they form the
mean of the final k clusters.

For example, consider we are given satellite images of a country and we are asked to draw a
rough boundary of the cities in that country. Our approach to the problem could define
what a city might look like and then try to locate that in the given images. For simplicity, we
say parts of the country that have a high density of buildings is where the cities are. For a
moment, assume that we are capable of identifying buildings in an image. Now, the only
task left is to group these buildings together into clusters (cities). This is a perfect scenario of
using k-means clustering with the similarity metric being the distance between two
buildings. The closer the buildings, the more chances they have of being in the same city.

You must be wondering how exactly could this be useful for computer vision? Imagine the
same task of classifying digits. (I keep coming back to the same problem of digit
classification so that we get a sense of how similar or different are all the algorithms that we
are looking at in this chapter.) We are given a lot of images of size 28 x 28 for all the digits.
Imagine this to be a 784-dimensional space with each image being a point in that space.
(This is difficult to visualize, but try!) For a particular digit, all of its images will lie in a
particular part of the 784-dimensional space since almost all of them will have similar pixels
with black color. So when we calculate the distance between them, which is nothing but the
squared sum of differences of each pixel value, the distance between images of the same
digit will have lower value as compared to the distance between images of different digits
because most of the differences will become zero for the same digits.



Integrating Machine Learning with Computer Vision

[ 96 ]

Now that we have some understanding of K-means clustering, let's look at a code snippet
that implements the same using sklearn:

from sklearn import datasets, metrics
from sklearn.cluster import KMeans

mnist = datasets.load_digits()
images = mnist.images
data_size = len(images)

#Preprocessing images
images = images.reshape(len(images), -1)
labels = mnist.target

#Initialize Logistic Regression
clustering = KMeans(n_clusters=10, init='k-means++', n_init=10)

#Training the data on only 75% of the dataset. Rest of the 25% will be used
in testing the KMeans Clustering
clustering.fit(images[:int((data_size / 4) * 3)])

#Print the centers of the different clusters
print(clustering.labels_)

#Testing the data
predictions = clustering.predict(images[int((data_size / 4)):])

From the preceding code, let's look at the KMeans function. It takes a number of parameters
as input. The first is the number of clusters, which is also the value of K in the algorithm.
The next is init, where init means the algorithm that is used to initialize the first K
centers for each cluster. The different options that a developer has are random, k-means++,
or an array with custom K centers chosen by the developer. The k-means++ initialization is
based on Lyod's algorithm of finding evenly-spaced points in a Euclidean space. The
Wikipedia page for Lyod's algorithm explains the exact concepts very well. The last
parameter, n_init, that we used, means the number of different initial points we want to
use. 10 means that we ran the k-means algorithm with 10 different initial points and then
pick the one that performed the best. 

Does something look out of place in this code? Yes, you got it right. We did not calculate the
performance report this time. But why? Since this is a form of unsupervised learning, there
is no way for us to co-relate the labels that are given by the k-means code and the labels that
we have. There are ways in which you can manually co-relate the labels that you have with
the labels that are output by the k-means algorithm and then compute the performance.
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Summary
In this chapter, we looked at the basics of machine learning by understanding the various
applications of machine learning, preprocessing techniques, and then three algorithms.
Logistic regression and support vector machines are types of supervised machine learning
algorithms, which require the developer to pass labeled training data. Then we looked at an
unsupervised machine learning algorithm called k-means, which requires us to give just the
data as input. Both types of learning algorithms are useful depending on the kind of data
we have and the application that we are trying to build. There are more sophisticated
techniques in machine learning, such as neural networks, which we will look at in more
depth in the next chapter.



6
Image Classification Using

Neural Networks
As we saw in the last chapter, machine learning can be a very useful tool in making
applications more sophisticated and robust. In this chapter, we will add to our arsenal of
machine learning techniques by understanding what neural networks are and how they can
be used in the context of machine learning. We will look at the basics of neural networks
and then, later in the chapter, talk about the state-of-the-art networks that are being used
today in applications and services that we use everyday. One of the most studied tasks in
computer vision is image classification. Given an image, can the computer tell what the
image is of? Say, for example, if the computer is shown an image of a car, can it identify
whether it's a car or not. Towards the end of this chapter, we will be able to build such a
system with good accuracy. (Nothing is ever perfect!)

The following broad topics will be covered in the chapter:

Introduction to neural networks
Convolutional neural networks
Challenges in machine learning

Let's begin with understanding what neural networks are, their history, and how they are
relevant today.
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Introduction to neural networks
The whole idea of machine learning is to build systems that given an input are able to
predict the correct output with respect to a certain predefined context. For example, we
want to build an image classification system, which is capable of telling the users what the
given input image is of (see Figure 1). We briefly discussed this in the previous chapter. In
this chapter, we will look at the context of neural networks:

Figure 1: A neural network takes in an image and returns what that image is of

Think of a neural network as a polynomial function (just like any other mathematical
function, say f(x) = x + 2), which is very difficult to devise manually using techniques of
mathematics. With respect to computer vision, x in f(x) is the image and the output is the
image label. So the task at hand is to find out this function. Like we saw in the previous
chapter, we will feed this polynomial function with our training data and look at the output
of the function. We know what the correct output should be. We find the error in the output
of the function and the correct output and modify the coefficients of the polynomial
function such that the output error reduces. We keep feeding data to our function until we
reach an error rate that is within the acceptable range set by us.

This is a very effective technique in finding functions that fit high-dimensional data. Doing
the same task manually would require a lot of effort and time with no guarantee of a
suitable result.

Design of a basic neural network
Neural networks are said to be inspired from the human brain. Just as our brains are made
up of several neurons connected to each other, neural networks are made up of
programmatically designed neurons that are connected to each other. We call the
programmatically designed neurons—perceptrons.

Perceptrons form the atomic unit of neural networks. They take as input a set of numbers
(one or many), multiply the input with some weights, and return an output.



Image Classification Using Neural Networks

[ 100 ]

The following diagram illustrates this concept:

Figure 2: A perceptron

In Figure 2, it takes input as three values and returns an output. What happens inside is
controlled by the developer. The most usual operation in each input is multiplied by a
weight and the normalized sum of all products is returned.

Depending on the application and the data, the perceptron can be programmed to perform
other operations. For example, after the sum of the products is calculated, the perceptron
returns a 1 or a 0 if the sum is over a certain threshold.
To form a neural network, we connect such perceptrons to each other. One such network is
shown in Figure 3 as follows:

Figure 3: An example of a neural network

Here, each of the individual circles represent a perceptron. Each perceptron takes in a set of
inputs and returns an output to the next layer of perceptron. What you see in Figure 3 is just
one way of creating a neural network. Each perceptron in a particular layer is connected to
all the perceptrons in the previous layer. This is called a fully connected neural network. We
will see in this chapter, some other types of networks that are more commonly used in
computer vision these days.
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There are a lot of different ways in which we can connect the perceptrons. We can change
the number of layers we have in our neural networks. Different networks have different
advantages. There is no standard network that works well for all cases. In machine learning,
a lot depends on the kind of data you have and the nature of application that you are trying
to develop.

Now that we know what a neural network is, let's take a step further and delve into some
formal definitions.

The first layer of a neural network is usually called the input layer and similarly the last
layer of the neural network is called the output layer. All other layers between them are
known as the hidden layers. An input layer and an output layer is a must in a network but
the number of hidden layers can vary from zero to as many as you want (as you will see
later in the chapter, the greater the number of layers adds a significant amount of time in
training the network, thus striking a good balance is very important).

What about the size of each of these layers? The size of the input layer is decided by the size
of the images. Say our image size is 28 x 28. The size of the input layer will be 784 (28 * 28).
Then comes the hidden layer. Its size is decided by the user. One thing to keep in mind is to
not make the size of the hidden layer extremely large or small as compared to the input
layer. And, finally, the size of the output layer depends on the number of labels we have.
Say we are classifying images into digits, which means we can have 10 different labels. The
work of the output layer is to have a perceptron for each of the labels. Hence, in this case,
the size of the output layer would be 10. Each perceptron in the output layer will return the
probability of the input being in a particular label. The perceptron with the highest
probability is selected and its associated label is returned as the output.

Training a network
Once we have the network design in place, we can now start training the network. The
training phase of any neural network comprises two parts: first, feed forward the input and
second, backpropagate the error. Let's understand each of them separately.

Feed forward means to take the input and pass it through the perceptrons in our network
and calculate the output using the perceptrons. The input values are multiplied with the
weights values of the perceptrons and an output is generated.
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While backpropagating, we take the feed forward output (from the last step) and find its
difference from the actual output (ground truth). Using this error, we modify the weights of
the perceptron. You can think of the weights of each perceptron as coefficients of the
polynomial function. For training the network which has an acceptable error count, we
need to pass the entire input dataset multiple times to the network. One pass of the entire
dataset is known as an epoch.

MNIST digit classification using neural networks
To understand all these concepts better, let's implement our own neural network using
the sklearn library. We will use the MNIST digits dataset for our task. The steps involved
in training our network are:

Preprocess the dataset by normalizing the pixel values of the images between 0, 11.
or -1, and 1 (to make the mean 0).
Prepare the dataset. Split the dataset into two sets—training set and testing set.2.
Start training the dataset over the test data.3.
Compute your network's performance over the test dataset.4.

The following code trains a neural network for classification of handwritten digits (MNIST
dataset):

from sklearn.datasets import fetch_mldata
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import normalize
from sklearn.model_selection import train_test_split

#Get MNIST Dataset
print('Getting MNIST Data...')
mnist = fetch_mldata('MNIST original')
print('MNIST Data downloaded!')

images = mnist.data
labels = mnist.target

#Preprocess the images
images = normalize(images, norm='l2') #You can use l1 norm too

#Split the data into training set and test set
images_train, images_test, labels_train, labels_test =
train_test_split(images, labels, test_size=0.25, random_state=17)

#Setup the neural network that we want to train on
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nn = MLPClassifier(hidden_layer_sizes=(100), max_iter=20, solver='sgd',
learning_rate_init=0.001, verbose=True)

#Start training the network
print('NN Training started...')
nn.fit(images_train, labels_train)
print('NN Training completed!')

#Evaluate the performance of the neural network on test data
print('Network Performance: %f' % nn.score(images_test, labels_test))

Let's take a look at the code and understand what is really happening. The code follows the
four steps that were mentioned at the beginning of this section. We first download the
MNIST dataset using the helper functions from the sklearn library. Once we have that
data, we then go on to normalize the dataset using sklearn.preprocessing.normalize.
This scales the data down to the range of (0, 1). The next step is to split the data into a test
set and training set. We use the sklearn.model_selection.train_test_split
function for this. Now we finally come to our neural network. Using the MLPClassifier
class, we create our own network. One particularly important parameter to look at
is hidden_layer_sizes. This is where we get to choose the size of our network. As we
saw earlier, input and output layers are mandatory for a neural network, but the number of
hidden layers are in our control. In the preceding example, there is one hidden layer of size
100. In the next section, we will look at how the performance of the network changes as we
change the number and size of the hidden layers. The max_iter parameter sets the
maximum number of iterations that we will go through before we end the training. This
does not mean that we will always iterate over the network that many times. If we reach an
error rate that is within our acceptable range, then we can end the training early too.

The following is the output of the the preceding code:

NN Training started...
Iteration 1, loss = 2.29416218
Iteration 2, loss = 2.25190395
Iteration 3, loss = 2.20543191
Iteration 4, loss = 2.15313552
Iteration 5, loss = 2.09424290
Iteration 6, loss = 2.02753398
Iteration 7, loss = 1.95293486
Iteration 8, loss = 1.87160113
Iteration 9, loss = 1.78508449
Iteration 10, loss = 1.69547767
Iteration 11, loss = 1.60492990
Iteration 12, loss = 1.51560190
Iteration 13, loss = 1.42952528
Iteration 14, loss = 1.34794722
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Iteration 15, loss = 1.27173197
Iteration 16, loss = 1.20135274
Iteration 17, loss = 1.13696783
Iteration 18, loss = 1.07838018
Iteration 19, loss = 1.02531269
Iteration 20, loss = 0.97732106
NN Training completed!
Network Performance: 0.810229

As you can see, with iteration, the loss value (error value) of the network keeps decreasing.
This means that the network is learning the input data well over time. Network
performance means that out of every 100 images provided to the neural network for testing,
81 images were classified correctly and the other 19 images were misclassified. In the next
section, we will see how we can improve the network performance.

Even though the idea of training a neural network sounds difficult, using sklearn, you can
get your network up and running within minutes. Although a point to note is that sklearn is
probably not the best choice for building large-scale machine learning applications. There
are other more advanced libraries that are more capable of handling large amounts of data
efficiently.

Playing with hidden layers
In the example used in the last section, we tried to train our network with one hidden layer
of size 100. Let's play around with that and see what happens.

First we will increase the size of the hidden layer from 100 to 200:

nn = MLPClassifier(hidden_layer_sizes=(200), max_iter=20, solver='sgd',
learning_rate_init=0.001, verbose=True)

The network performance is as follows:

Network Performance: 0.816800

We see that there is no significant improvement in the result. Now, let's try with increasing
the number of hidden layers. We will train our network with three hidden layers of size 100
each:

nn = MLPClassifier(hidden_layer_sizes=(100, 100, 100), max_iter=20,
solver='sgd', learning_rate_init=0.001, verbose=True)

The result is as follows:

Network Performance: 0.857829
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As we can see, there was an improvement of 5%. This means that if we increase the number
of hidden layers, the performance improves. But this also does not mean that you will get a
linear increase in the performance of the network as you keep improving the size of the
network. There is no hard-and-fast rule as to how many hidden layers should a network
have.

Until now, we have only seen fully connected networks. Let's take a look at another
commonly used network architecture—convolutional neural networks.

Convolutional neural networks
Convolutional neural networks (CNNs) were first introduced somewhere around 1998 and
since then have evolved a lot. CNNs are a variant of the traditional neural networks, where
unlike the neural networks, not all perceptrons are connected to each other. In CNNs, the
connections between perceptrons are sparse. Apart from that, each layer in a CNN can
behave in a different manner. Let's take an example of a basic CNN and use that as a
reference to explain the different concepts involved. The architecture that we will look at is
called LeNet, which was proposed by Yann LeCun and others. This research effort was the
beginning of the field of CNNs. Let's understand what they are and how they are different
from traditional neural networks:

Figure 4: This is one of the most basic convolutional architectures - LeNet ( LeCun et. al. 1998); (Source: http:/ / papers. nips. cc/ paper/
4824-imagenet- classification- with- deep- convolutional- neural- networks. pdf)
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In Chapter 1, Introduction to Image Processing, we studied the concept of convolutions in
images. Let's refresh our memory here a bit. Convolution is the technique of passing a
kernel/filter over the entire image and producing a new image that may be smaller in size
from the original image. While passing the filter over the image, what we are essentially
doing is multiplying each cell in the kernel/filter by the corresponding cell in the image,
summing all the products, and populating the output image with the value of the product. 

As the name suggests, in convolutional neural networks, we take the input, apply
convolution over the image using a randomly initialized filter, and produce a new image,
which is smaller in size than the input image. Then, we repeat the same process with the
output image from the first layer. We convolve the output image with a different randomly
initialized filter and generate a new output image. We repeat this twice. Each time we take
an image and apply convolution over it using a filter, we call it the convolutional layer.
After every convolutional layer, the size of the output is less than the size of the input
image. This concept is know as subsampling. As you can see in Figure 4, we have two
convolutional layers and between the convolutional layers, we have subsampling. In Figure
4, after the second subsampling, we have a full connection. This is also called a fully
connected layer in some books/papers. Fully connected layers are nothing but the
traditional neural networks. As in neural networks, we have all perceptrons connected to
each other, and we start to call these fully connected layers in CNNs. Fully connected layers
help us to transform the subsampled images into scores for each label. The output from the
fully connected layer is the probability score for each class. 

Why do we have to use a convolutional layer and not build a traditional neural network
with five layers? The problem with traditional neural networks is that they do not scale well
for larger images. As the size of the image starts to increase, the number of perceptrons in
the neural network would also start to increase and it will exponentially increase the time it
takes to train the networks. On the other hand, in convolutional neural networks, the
convolutional layers do not have to perform as many computations as a layer of
perceptrons in NN, it is faster to train CNNs as compared to NNs; of the same size and
CNNs also perform better.

Now that we know what CNNs are, let's try to implement LeNet using the sklearn library.
The following code is an implementation of LeNet. Before we dive into the code, there are
few libraries that we need to install:

keras: This is a library for machine learning that will help us in implementing
various components of a convolutional neural network. To install, run pip
install keras.
OpenCV: Follow the installation instructions given in Chapter 7, Introduction to
Computer Vision Using OpenCV.
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Once we have these installed, we are ready to run the following code:

from keras.models import Sequential
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.core import Activation, Flatten, Dense
from keras.optmizers import SGD
from keras.utils import np_utils
from sklearn import datasets

#Config values
num_classes=9
img_depth=1
img_height=28
img_width=28

#Creating the LeNet model

model = Sequential()

#Adding the first convolutional layer
model.add(Convolution2D(20, 5, 5, border_mode="same",
input_shape=(img_depth, img_height, img_width)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

#Adding the second convolutional layer
model.add(Convolution2D(50, 5, 5, border_mode="same"))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

#Adding the fully connected layers
model.add(Flatten())
model.add(Dense(500))

#Load MNIST data

model.add(Activation("relu"))

#Adding a softmax layer
model.add(Dense(num_classes))
model.add(Activation("softmax"))

mnist = datasets.fetch_mldata("MNIST Original")

#MNIST data is a flat array of size 784.
#We need to reshape it be in 28x28 images as we have to feed it to a
convolutional layer
mnist.data = mnist.data.reshape((mnist.data.shape[0], 28, 28))
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mnist.data = mnist.data[:, np.newaxis, :, :]
mnist.data = mnist.data / 255.0 #Normalize the images to [0, 1.0]

#Split the data into train and test set
train_data, test_data, train_label, test_label =
train_test_split(minist.data, mnist.target, test_size=0.25)
train_label = np_utils.to_categorical(train_label, 10)
test_label = np_utils.to_categorical(test_label, 10)

#Set the loss funtions and evaluation metrics
model.compile(loss="categorical_crossentropy", optimizer=SGD(lr=0.0001),
metrics=["accuracy"])

#Train the LeNet model
model.fit(train_data, train_label, batch_size=32, no_epoch=30, verbose=1)

#Test the model
loss, accuracy = model.evaluate(test_data, test_label, batch_size=64,
verbose=1)
print("Accuracy: %".format(accuracy * 100))

Let's break down the code and see how it compares to what we read so far about CNNs. We
start with defining configuration parameters. Image depth, width, height, and number of
classes. In our case, we are again using the MNIST dataset that we have been using
throughout the book. 

We then go on and define the LeNet model as described earlier in the text. We create two
convolutional layers followed by a fully connected layer.

This is one of the most simple CNNs. The more advanced CNN architectures such as
ResNet and Inception are way more accurate and powerful in tasks of image classification.
Implementing these architectures are beyond the scope of this book.

A nice exercise here would be to build a small application that takes in a random image,
converts it to a grayscale image, resizes it to 28 x 28, and feeds it to the CNN model that we
just implemented. This technique is used in post offices to detect zip codes and it works
fairly well.



Image Classification Using Neural Networks

[ 109 ]

Challenges in machine learning
The most important challenge that researchers in machine learning face is that of the data.
How do you decide whether the data that you have is good enough? When do you say the
amount of data you have is enough? These are some questions that are very difficult to
answer. The main purpose of building machine learning systems is to make them as general
as possible for a given scenario. Say we are trying to build a handwritten digit classification
system. Can we be sure that any image of digit 5 that we provide to the system will be able
to output the correct output? Suppose our training data has hand samples from five people
and we test the system on digits written by a sixth person. Will it perform as good? An
extension to this problem is the lack of labeled data. One of the most laborious parts of
collecting data is labeling data. Over time, with collaborative efforts from researchers, there
are some good quality datasets available. But if you want to apply machine learning to a
new field that has not been explored much before, collecting and labeling data is a
challenging task that cannot be neglected. The system that you build will only be as good as
the data that you have. It does not mean that if you have good data, you will have a good
ML system. You of course need to have a good algorithm too.

Summary
In this chapter we learned about an important area within machine learning: neural
networks. Neural networks form the basis of many state-of-the art machine learning
systems. We began the chapter by understanding what neural networks are and how they
work. Using the example of digit classification, we trained our own basic neural network
which was capable of classifying an image into one of the 10 digits. After that we trained a
more complex neural network - LeNet. LeNet is an example of a convolutional neural
network, which has over time proved to perform better than traditional neural networks.
Towards the end, we saw some challenges faced by researchers and developers in machine
learning. In the next chapter, we will learn about another image processing library -
OpenCV. This will help the readers expand their arsenal of tools for building computer
vision applications.



7
Introduction to Computer Vision

using OpenCV
OpenCV is an open source library for image processing and computer vision. Throughout
the book, we have looked at scikit-image and pillow as tools for implementing various
applications. In this chapter, we will learn about OpenCV and how to implement basic
operations in image processing, including:

Morphological operations
Edge detection
Contour detection
Filters
Template matching

OpenCV is a widely used library with many academic and commercial products using it at
scale. In this chapter, we will revisit some of the algorithms and applications that we have
seen so far in the book and re-implement them using OpenCV for Python 3. 

Installation
In this section, we will cover the steps to install OpenCV in various operating systems.
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macOS
The following steps will install OpenCV on macOS:

The first step is to install Xcode on your system. You can install Xcode from the1.
App Store for free. Install the open Terminal and execute this command to accept
the license:

        sudo xcodebuild –license

Now, type agree at the end of the document. Then, you need to install2.
command-line tools using Xcode by executing this command:

        sudo xcode-select –install

The next step is to install OpenCV using the homebrew command. To install3.
using homebrew, execute these commands:

        brew tap homebrew/science
        brew install opencv3 --with-contrib --with-python3 --without-python

Now, the final step is to link OpenCV and Python. For doing this, first you need4.
to change the filename in /usr/local/opt/opencv3/lib/python3.5/site-
packages/ from cv2.cpython-35m-darwin.so to cv2.so by executing
these commands:

        cd/usr/local/opt/opencv3/lib/python3.5/site-packages/
        mv cv2.cpython-35m-darwin.so cv2.so

Then finally execute this command to complete the installation:5.

        echo /usr/local/opt/opencv3/lib/python3.5/site-packages >>
/usr/local/lib/python3.5/site-  packages/opencv3.pth

Windows
OpenCV in Windows can be installed using the pip command:

pip install opencv_python-3.2.0-cp36-cp36m-win32.whl
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Linux
The pip command can also be used to install OpenCV in Linux. The command for this is:

pip install opencv-python

OpenCV APIs
Now that we have OpenCV 3.2 installed on our machine, let's begin exploring the different
APIs in OpenCV and how they can be used to build our computer vision application.

Reading an image
OpenCV has the imread() function to read an image. It takes the name of the file and
returns the image matrix. The imshow() function can be used to display the image. The
imshow() function takes the title and the image matrix as parameters. The following is an
example of reading an image:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> cv2.imshow("image",img)

The following figure is the output of the preceding code:       

Figure 1



Introduction to Computer Vision using OpenCV

[ 113 ]

Writing/saving the image
The imwrite() function can be used to save the image to the disk. It takes the image name
and the image matrix as input. The following is an example of writing an image:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> cv2.imwrite("saved_image.jpg", img)

Changing the color space
OpenCV provides the cvtColor() function to convert the image from one color space to
another. It takes the image as input and also the color space conversion code. The following
are a few conversion codes:

COLOR_BGR2GRAY

COLOR_BGR2HSV

COLOR_HSV2BGR

COLOR_BGR2YUV

COLOR_GRAY2BGR 

The following is an example code for converting a BGR image to a grayscale image. We can
change the second parameter of the cvtColor() function by any of the earlier mentioned
parameter values:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
>>> cv2.imwrite("gray_image.jpg", gray)
>>> cv2.imshow("image",gray)
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The following figure is the output of the preceding code:

Figure 2: The original image is on the left and the output is on the right

Scaling
In order to resize the image, OpenCV has a resize() function, which takes the image,
dimensions, and interpolation algorithm as input. Various interpolation algorithms can be 
used to interpolate the new pixel values. The following are the interpolation algorithms,
which can be used to resize the image:

cv2.INTER_AREA: This algorithm is preferred for shrinking the image
cv2.INTER_CUBIC: This algorithm is preferred for zooming (slow)
cv2.INTER_LINEAR: This algorithm is preferred for zooming
cv2.INTER_LINEAR: This is the default algorithm

The following is an example of resizing an image:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> r,c = img.shape[:2]
>>> new_img = cv2.resize(img, (2*r,2*c), interpolation = cv2.INTER_CUBIC)
>>> cv2.imwrite("resize_image.jpg", new_img)
>>> cv2.imshow("resize", new_img)
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The img.shape attribute in this code returns the dimensions of the image. The following
figure shows the output of the preceding code:

Figure 3: The original image is on the left and the output is on the right

Cropping the image
Cropping an image in OpenCV is very easy. It can be done by slicing the image array.
Slicing an array is just taking the array values within particular index values. Consider the
following example:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> img_crop = img[0:200, 150:350]
>>> cv2.imwrite("crop_img.jpg", img_crop)
>>> cv2.imshow("crop", img_crop)
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The following figure is the output of the preceding code:

Figure 4: The original image is on the left and the output is on the right

Translation
For geometric transformation, OpenCV provides the wrapAffine() function, which takes
the image, transformation matrix, and dimension of the image as input. The transformation
matrix for the translation is as follows:

Here, (tx, ty) tells us the amount of shift in the image. For example, the following code shifts
the image by (100,100):

>>> import cv2
>>> import numpy as np
>>> img = cv2.imread("image.jpg")
>>> r,c = img.shape[:2]
>>> M = np.float32([[1,0,100],[0,1,100]])
>>> new_img = cv2.warpAffine(img,M,(c,r))
>>> cv2.imwrite("translation.jpg", new_img)
>>> cv2.imshow("translation", new_img)
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The following figure is the output of the preceding code:

Figure 5: The original image is on the left and the output is on the right

Rotation
Rotation can also be done using wrapAffine()--only the transformation matrix changes.
The transformation matrix for the rotation is as follows:

Here, theta is the angle by which you want to rotate the image. The following code is an
example of rotating the image by 90 degrees:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> r,c = img.shape[:2]
>>> M = cv2.getRotationMatrix2D((c/2,r/2),90,1)
>>> new_img = cv2.warpAffine(img,M,(c,r))
>>> cv2.imwrite("rotate_img.jpg", new_img)
>>> cv2.imshow("rotate", new_img)
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In this code, we use the getRotationMatrix2D() function to generate the transformation
matrix. It takes the center for rotation, angle of rotation, and scaling factor as input. The
following figure is the output of the preceding code:

Figure 6: The original image is on the left and the output is on the right

Thresholding
We learned about thresholding in Chapter 2, Filters and Features. Now, let’s see how it can
be implemented using OpenCV. OpenCV has an inbuilt threshold() function, which
takes a grayscale image, threshold value, and new value to be assigned if the value is
greater than the threshold and type of thresholding as input. The types of thresholding
are:

cv2.THRESH_BINARY

cv2.THRESH_BINARY_INV

cv2.THRESH_TRUNC

cv2.THRESH_TOZERO

cv2.THRESH_TOZERO_INV
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The following code is an example for thresholding:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
>>> new_img = cv2.threshold(gray,120,255,cv2.THRESH_BINARY)
>>> cv2.imwrite("thresholding.jpg", new_img[1])
>>> cv2.imshow("thresholding", new_img[1])

In the given example, all the pixels in the grayscale image, which are above 120, are set to
white and the others are set to black, as you can see in Figure 7, which is the output of the
preceding code:

Figure 7: The original image is on the left and the output is on the right

Filters
In this section, we will see implementations of a few filters that we saw in Chapter 2, Filters
and Features, using the OpenCV library. As we saw in the previous chapter, filters are
created by convolution of a kernel with an image. To do this operation, OpenCV provides
the cv2.filter2D() function, which takes the image, destination image depth, and kernel
as input. Using this we can create our own filter.
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Consider the following example:

>>> import cv2
>>> import numpy as np
>>> img = cv2.imread("image.jpg")
>>> ker = np.array([[1, 1, 1],
... [1, 1, 1],
... [1, 1, 1]])
>>> new_img = cv2.filter2D(img,-1,ker)
>>> cv2.imwrite("filter.jpg", new_img)
>>> cv2.imshow("filter", new_img)

The kernel is used as follows:

The following figure is the output of the preceding code:

Figure 8: The original image is on the left and the output is on the right

Now, let's look at other inbuilt functions of filters in OpenCV.
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Gaussian blur
There is an inbuilt function, GaussianBlur(), which takes the image, dimension of the
kernel, and standard deviation as input. If the input standard deviation is zero, then the
standard deviation is calculated from the size of the kernel:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> new_img = cv2.GaussianBlur(img,(5,5),0)
>>> cv2.imwrite("gaussian_blur.jpg", new_img)
>>> cv2.imshow("gaussian_blur.jpg", new_img)

The following figure is the result of applying the Gaussian blur filter:

Figure 9: The original image is on the left and the output is on the right

Median blur
OpenCV has the medianBlur() function, which takes the image and size of the kernel as
input (positive odd number):

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> new_img = cv2.medianBlur(img,5)
>>> cv2.imwrite("median_blur.jpg", new_img)
>>> cv2.imshow("median_blur", new_img)
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The following figure is the result of applying the median blur filter:

Figure 10: The original image is on the left and the output is on the right

Morphological operations
In this section, we see the implementation of the erosion and dilation using the OpenCV
library that we learned about in Chapter 2, Filters and Features.

Erosion
As we saw in the earlier chapter, erosion requires a structuring element or kernel; therefore,
the erode() function in OpenCV requires an image, kernel, and the number of times the
erosion should be applied as input. Let's see an example code:

>>> import cv2
>>> import numpy as np
>>> img = cv2.imread("thresholding.jpg")
>>> ker = np.ones((5,5),np.uint8)
>>> new_img = cv2.erode(img,ker,iterations = 1)
>>> cv2.imwrite("erosion.jpg", new_img)
>>> cv2.imshow("erosion", new_img)
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The following figure shows the output of the code:

Figure 11: The input image is on the left and the image on the right is the output

Dilation
Similarly, let's see the code for dilation using the dilate() function:

>>> import cv2
>>> import numpy as np
>>> img = cv2.imread("thresholding.jpg")
>>> ker = np.ones((5,5),np.uint8)
>>> new_img = cv2.dilate(img,ker,iterations = 1)
>>> cv2.imwrite("dilation.jpg", new_img)
>>> cv2.imshow("dilation", new_img)

The following figure is the output of the preceding code:

Figure 12: The input image is on the left and the image on the right is the output
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Edge detection
In this section, we will see the implementation of edge detection algorithms using OpenCV
that we studied in Chapter 2, Filters and Features. We will cover Sobel and Canny edge
detection algorithms.

Sobel edge detection
The Sobel() function in OpenCV can be used to find the edges of an image. The Sobel()
function takes the image, output image depth, order of derivative in x and y direction, and
the size of the kernel as input. In the following code, we will look at both horizontal and
vertical edges:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
>>> x_edges = cv2.Sobel(gray,-1,1,0,ksize=5)
>>> cv2.imwrite("sobel_edges_x.jpg", x_edges)
>>> y_edges = cv2.Sobel(gray,-1,0,1,ksize=5)
>>> cv2.imwrite("sobel_edges_y.jpg", y_edges)
>>> cv2.imshow("xedges", x_edges)
>>> cv2.imshow("yedges", y_edges)

In the code, we have taken the order of derivative in x direction equal to 1 and the order of
derivative in y direction equal to 0 for Sobel in the x direction and the opposite for the y
direction. Also, we have used -1 for the image depth, which means the image depth of the
output will be the same as the input.
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The following figure is the output Sobel in the x direction:

Figure 13: The image on the left is the input image and the image on the right is the output of Sobel in the x direction

The following figure is the output in the y direction:

Figure 14: The image on the left is the input image and the image on the right is the output of Sobel in the y direction
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Canny edge detector
Now, let's see the Canny() function in OpenCV. The Canny() function takes the image,
min and max threshold values, and the size of the kernel as input. The following code
shows how to use Canny edge detection in Python:

>>> import cv2
>>> img = cv2.imread("image.jpg")
>>> gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
>>> edges = cv2.Canny(gray, 100, 200, 3)
>>> cv2.imwrite("canny_edges.jpg", edges)
>>> cv2.imshow("canny_edges", edges)

Here is the output image of the preceding code:

Figure 15: The image on the left is the input image and the image on the right is the output of the Canny edge detector

Contour detection
In this section, we will see how to use the findContours() function in OpenCV. First let's
see what the function returns. It returns three arrays: first is the input image array, the
second is the contours found in the image, and the third is the hierarchy array. The
hierarchy array stores the relation between the contours: for example, if one contour is
within another contour, then they will have a parent-child relationship and this is stored in
the hierarchy array. The findContours() function takes three arguments: the source
image, contour retrieval mode, and contour approximation method.
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The contour retrieval mode tells us about the kind of hierarchy of contours: for example, in
RETR_LIST, parents and child are considered equal and they are considered to be in the
same level of hierarchy. Other types of retrieval modes are as follows:

RETR_EXTERNAL

RETR_CCOMP

RETR_TREE

>>> import cv2
>>> img = cv2.imread('image.jpg')
>>> gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
>>> thresh_img = cv2.threshold(gray,127,255,0)
>>> im, contours, hierarchy =
cv2.findContours(thresh_img[1],cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
>>> cv2.drawContours(img, contours, -1, (255,0,0), 3)
>>> cv2.imwrite("contours.jpg", img)
>>> cv2.imshow("contours", img)

Figure 16 shows the output of the code:

Figure 16: The image on the left is the input image and the image on the right is the output with contours shown in blue color
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Template matching
In this section, we learn about how to locate a template image in an image using some
OpenCV functions. A smaller image template matching will help get coordinates in a larger
image that match with the template. Let us try to understand this with an example and also
see how to write the code for it in Python. The following Figure 17 is the template image we
are going to use in our example:

Figure 17: Template image that we wish to find in an image

The following Figure 18 is the original image in which we have to locate the template image:

Figure 18 Image used to find the template shown in Figure 17
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In the code for template matching, we are going to use cv2.matchTemplate()
and cv2.minMaxLoc() functions. The cv2.matchTemplate() function iterates over the
image and compares the input with template to find the match. The cv2.minMaxLoc() will
give you the location of the best match. There are a few methods for finding the template in
the image:

cv2.TM_CCOEFF

cv2.TM_CCOEFF_NORMED

cv2.TM_CCORR

cv2.TM_CCORR_NORMED

cv2.TM_SQDIFF

cv2.TM_SQDIFF_NORMED

The code for the template matching is as follows:

import cv2

img = cv2.imread("image.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

img_temp = cv2.imread("template.jpg")
gray_temp = cv2.cvtColor(img_temp, cv2.COLOR_BGR2GRAY)

w, h = gray_temp.shape[::-1]

output = cv2.matchTemplate(gray,gray_temp,cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(output)

top = max_loc
bottom = (top[0] + w, top[1] + h)

cv2.rectangle(img,top, bottom, 255, 2)

cv2.imshow("image",img)
cv2.imwrite("img.jpg",img)
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In the code, the max_loc variable will give us the coordinates of the top left corner of the
rectangle. To find the bottom right coordinates, we add the width and height of the
template image to the top left coordinates. Figure 19 shows the output of the code:

Figure 19: Output of the template matching. The blue box shows the part of the image where the template shown in Figure 17 matched with this image.

Summary
In this chapter, we revisited all the algorithms that we had seen so far in this book and
implemented them using a new open source library, OpenCV. The topics discussed in this
chapter lay the foundations of image processing using OpenCV and will equip you to build
more sophisticated applications.

In the next chapter, we will look at some feature extraction algorithms provided by
OpenCV.



8
Object Detection Using

OpenCV
This chapter is a re-visit of Chapter 3, Drilling Deeper into Features - Object Detection, but
with new algorithms. As you may be familiar with object detection from Chapter 3, Drilling
Deeper into Features - Object Detection, in this chapter, we will cover some more feature
extraction algorithms. Unlike Chapter 3, Drilling Deeper into Features - Object Detection, in
this chapter, we will use OpenCV to implement all the algorithms.

The following topics will be covered in this chapter:

Cascade classifier—Haar Cascades
Scale Invariant Feature Transformation (SIFT)
Speeded-up robust features (SURF)

Haar Cascades
Haar Cascades is a type of cascade classifier, where the system is made up of multiple
chained classifiers (refer to Chapter 3, Drilling Deeper into Features-Object Detection, for
details on cascade classifiers). Haar Cascades is one of the first feature extraction
algorithms. Viola and Jones, in their face detection algorithm, first introduced a way of
using Haar wavelets to extract features in an image. They proposed an algorithm for face
detection using Haar Cascades. The main idea behind the algorithm was the inherent
structure that is present in all the faces. For example, in every human face, the eye region is
darker than the cheeks, and the nose bridge region is darker than the eyes. Using such
characteristics of a human face, we learn the generic models of the face and then use these
trained models to detect faces in images.  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For Haar Cascades, we first train a model using some face images and then test it out on test
images like we did in Chapter 5, Integrating Machine Learning with Computer Vision and
Chapter 6, Image Classification Using Neural Networks. Initially, we feed a learning algorithm
with positive images (images with faces) and negative images (images without faces) and
learn the classifier. Then, we extract Haar features from the images using convolutional
kernels (as shown in the following diagram). Feature values are obtained by subtracting the
sum of white pixels under the white rectangle from the sum of pixels under the black
rectangle. We slide these kernels (nothing but Haar features) over the entire image and
calculate the feature values. If the value is above a certain user-defined threshold, we say
that there is a match; otherwise, we reject that region. The following diagram shows some
Haar features that are used for face detection. These features can also be used for other
objects too and are not restricted to just faces:

Figure 1: Different Haar features (left) and how they are used for face detection (right)

To reduce calculations while testing for Haar features in an image, we make use of integral
images. Let's understand what integral images are.

Integral images
Integral images, also known as summed area tables, are another form of storing images. For
integral images, we replace each pixel in the image with the sum of all the elements on the
left and above that pixel.
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The formula shown next is used to compute integral images:

Where, i(x', y') means the value of pixel at (x', y') in the image. I is the integral image.

If we closely look at the formula for calculating integral images, we will notice that there are
a lot of redundant calculations that we make. For computing the value for pixel (5, 5), we
compute the value for pixel (1, 1), (2, 2), and so forth. We can avoid these calculations if we
use the precomputed values in the integral image. The formula shown next computes
integral images in an efficient manner:

Here, i is the original image and I is the integral image.

Coming back to Haar Cascades, let's now look at an implementation of Haar Cascades to
detect faces in an image. But before we look at the code, we need to download pretrained
Haar Cascade XML files from the OpenCV trunk. The link for downloading the files is:
https://github.com/ opencv/ opencv/ tree/ master/ data/ haarcascades. 

You can download any pretrained Haar Cascade that you want. But for the purpose of this
example, we will work with haarcascade_frontalface_default.xml and
haarcascade_eye.xml. 

The code is as follows:

import cv2

face_cascade =
cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')

img = cv2.imread('image.jpg')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_cascade.detectMultiScale(img_gray, 1.3, 5)

for (x,y,w,h) in faces:

https://github.com/opencv/opencv/tree/master/data/haarcascades.
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https://github.com/opencv/opencv/tree/master/data/haarcascades.
https://github.com/opencv/opencv/tree/master/data/haarcascades.
https://github.com/opencv/opencv/tree/master/data/haarcascades.
https://github.com/opencv/opencv/tree/master/data/haarcascades.
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    cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
    roi_gray = img_gray[y:y+h, x:x+w]
    roi_color = img[y:y+h, x:x+w]
    eyes = eye_cascade.detectMultiScale(roi_gray)
    for (ex,ey,ew,eh) in eyes:
        cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)

cv2.imwrite('output.jpg',img)

The preceding code is very easy to follow. We first load the Haar Cascade classifier using
the cv2.CascadeClassifier() function. We load two classifiers, one for the face and the
other one for the eyes. The motive of this code is to first detect faces and then within the
face region detect the eyes. So, after loading the XML files, we read an image on which we
want to perform face detection. We first run the face detection over the entire image. After
storing the results of face detection in the faces, we iterate over the list and run the eye
detection classifier to find all the eyes in the images. To reduce computation cost, we run
the eye detection only in the face region by extracting the region of interest (ROI).

The output for the preceding code is as follows:

Figure 2: Output of face detection using Haar Cascades

Haar Cascades can be extended to work with other types of objects as well. You will have to
train the classifier by providing positive and negative images for the object you want to
detect. Training Haar Cascade takes a lot of time but it is fast when it comes to using the
trained classifier over test images.
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The next feature extraction algorithm that we will look at is SIFT.

Scale Invariant Feature Transformation
(SIFT)
Scale Invariant Feature Transform (SIFT) is one of the most widely used feature extraction
algorithms to date. Its scale, translation, and rotation invariance, its robustness to change in
contrast, brightness, and other transformations, make it the go-to algorithm for feature
extraction and object detection. It was proposed by David Lowe in 2004. 

The original publish paper can be found at http:/ /www. cs. ubc. ca/~lowe/ papers/ ijcv04.
pdf.

Some important properties of SIFT are as follows:

It is invariant to scaling and rotation changes in objects
It is also partially invariant to 3D viewpoints and illumination changes
A large number of keypoints (features) can be extracted from a single image

Let's see how SIFT is able to achieve all of the earlier mentioned properties. The next section
explains the SIFT algorithm in detail.

Algorithm behind SIFT
The main motivation behind SIFT is to extract local features from an image that is robust. To
achieve this, the algorithm is divided into the following four main stages:

Scale-space extrema detection
Keypoint localization
Orientation assignment
Keypoint descriptor

If you carefully read Chapter 3, Drilling Deeper into Features-Object Detection, you will
realize that this sounds very similar to the ORB algorithm (SIFT was proposed before ORB).
The takeaway from this point is that most of the feature-detection algorithms have the same
motivation to extract robust features and hence they have a very similar approach. All the
algorithms do something unique in each of these stages, which differentiates them from
each other in terms of scenarios where one works better than the other.
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Coming back to SIFT, let's explore each of those stages in detail.

Scale-space extrema detection
In the first stage of SIFT, we aim to achieve scale invariance by generating a multiple scale
pyramid of the original image as shown in Figure 3:

Figure 3: Original image blurred and resized to generate four octaves
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What we are essentially doing here is getting rid of details that do not persist at different
scales. By doing so, we are only left with information that is scale invariant. Now, to achieve
the pyramid shown in the preceding figure, we apply Gaussian Blur to the image.

We first take the original image and apply Gaussian Blur five times with different sigma
values. This results in five blurred images of the same size. In the context of SIFT, this is
known as an octave. Next, we will resize the original image and create another octave with
the resized image. We repeat this procedure four times to get four different octaves. In
Figure 1, each vertical row represents an octave. A point to note here is that five blurred
images and four octaves are hyper-parameters for SIFT. You are free to choose how many
octaves and blurred images in each octave you want. After empirical testing, four octaves
and five blurred images for each octave gave the best results.

After getting all the images in place, we will apply Laplacian of Gaussian, which is used to
precisely detect edges in an image. In Laplacian of Gaussian, we calculate the second order
derivative of the image, which locates all the edge and corner points in the image that will
be used as potential keypoints of the image. Since the second order derivative is extremely
sensitive to noise, Gaussian Blur helps in stabilizing the derivative. There is another
challenge with second order derivatives—they are computationally expensive to calculate,
which is not ideal if we want to use SIFT for real-time applications. To reduce the
computational cost of calculating the second order derivative, we do an approximation. We
approximate the second order derivative as a difference of Gaussian (refer to Chapter 2,
Filters and Features, for more details). The following formula shows the approximation:
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Here, D represents the Difference of Gaussian, G represents the Gaussian filter, L is the
Laplacian of Gaussian, k is the multiplicative constant that decides the amount of blurring
in each image in the scale space. A scale space is defined as the set of images that have been
either scaled-up or down for the purpose of computing keypoints. For example, Figure 4
shows two sets of images; one set is the original set of five images that have been blurred
with different blurring radius and the other is a set of scaled-down images:

Figure 4: Two sets of images blurred five times for computing the Difference of Gaussian

To generate the Laplacian of Gaussian images, we calculate the difference between two
consecutive images in an octave. This is called the Difference of Gaussian (DoG). These
DoG images are approximately equal to the ones obtained by calculating the Laplacian of
Gaussian. Using DoG also has an added benefit—the images obtained are also scale
invariant.

After this step, we have successfully filtered all the nonimportant points that did not persist
over different scales. In the next stage, we will further filter out points with stronger
constraints.
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Keypoint localization
In this stage, we will find points that are local extrema. This means, we need to identify
points that are best representations of a region of the image (in other words, the
neighborhood of the point) in different scales. To locate these keypoints, we iterate over
each pixel and compare it with all its neighbors. Now, this is where things start to become
interesting. Until now in the book, we always thought of neighbors as the eight pixels that
are adjacent to a pixel, but for SIFT, we will not only look at these eight pixels but also at the
nine pixels in the preceding images and below this image in the scale space or octave (look
at Figure 5). Here we are comparing the pixel value to its 26 neighboring pixels. We select
this point as a local extremum if it is the minimum or the maximum pixel among its
neighbors. On an average, we rarely compare the pixel value to all the 26 values; it only
takes a few comparisons to check:

Figure 5: To determine whether a pixel marked x is an extremum, we compare it with all the neighbors marked in green

We do not calculate the keypoints in the uppermost and lowermost images in an octave
because we do not have enough neighbors to identify the extrema.
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To make the algorithm more efficient in finding perfect extrema, the author observed that
the extrema are never located at the exact pixels. They may be present in between the pixels,
but we have no way to access this information in an image. The keypoints located are just
their average positions. We use the Taylor series expansion of the scale space function D(x,
y,σ ) (up to the quadratic term) shifted until the current point as the origin gives us:

Here, D and its derivatives are calculated at the point we are currently testing for extrema.
Using this formula, by differentiating and equating the result to zero, we can easily add the
subpixel keypoint locations.

SIFT recommends that you generate two such extrema images. Thus, to generate two
extrema, we need four DoG images. To generate these four DoG images, we need five
Gaussian blurred images. Thus, we need five images in a single octave. It has also been
found that the optimal results are obtained when σ = 1.6 and k = 2.

So far we have been able to further filter out points we got from the first stage, but if you
look at the actual number of points we still have, it is quite high. Some of these points lie on
the edge or do not have enough contrast that they are actually useful to us. Remember we
want an algorithm that is not sensitive to contrast or brightness change. Let’s solve these
problems one at a time. First, the points that lie on an edge. To filter these points out, we use
an approach that is similar to the one used in the Harris corner detector (refer to Chapter
3, Drilling Deeper into Features-Object Detection, for more details).

To eliminate keypoints along the edges, we calculate two gradients at the keypoint, which
are perpendicular to each other. The region around the keypoint can be one of the following
three types:

A region (both gradients will be small).
An edge (here, the gradient parallel to the edge will be small, but the one
perpendicular to it will be large).
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A corner (both gradients will be large)  as we want only corners as our keypoints,
we only accept those keypoints whose both gradient values are high. To calculate
this, we use the Hessian matrix. This is similar to the Harris corner detector. In
the Harris corner detector, we calculate two different eigenvalues, whereas, in
SIFT, we save the computation by just calculating their ratios directly.

To tackle the contrast problem, we use a rather simple technique. We simply compare the
intensity value of the current pixel to a preselected threshold value. If it is less than the
threshold value, it is rejected. Because we have used subpixel keypoints, we again need to
use the Taylor series expansion to get the intensity value at subpixel locations.

Once we have performed all the preceding operations, we have successfully filtered out all
the points that are not important for describing the image and all the points that we are left
with are the SIFT keypoints. But all is not done. Until now we have only fulfilled the scale-
invariant property; next up, we will make these key points rotation invariant.

Orientation assignment
Until now, we have stable keypoints and we know the scales at which these were detected.
So, we have scale invariance. Now we try to assign an orientation to each keypoint. This
orientation helps us achieve rotation invariance.  We try to compute the magnitude and
direction of the Gaussian blurred images for each keypoint. The magnitudes and directions
are calculated using these formula:
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The magnitude and orientation are calculated for all pixels around the keypoint. We create
a 36-bin histogram covering the 360-degree range of orientations. Each sample added to the
histogram is weighted by its gradient magnitude and by a Gaussian-weighted circular
window with σ, which is 1.5 times that of the scale of the keypoint. Suppose you get a
histogram, as shown in the following figure:

Figure 6: Histogram showing different orientation values

After this has been done for all the neighboring pixels of a particular keypoint,  we will get a
peak in the histogram. In the preceding figure, we can see that the histogram peaks in the
region 20-29. So, we assign this orientation to the keypoint. Also, any peaks above the 80%
value are also converted into keypoints. These new keypoints have the same location and
scale as the original keypoint, but its orientation is assigned to the value corresponding to
the new peak.

The fourth and the final stage is the keypoint descriptor.
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Keypoint descriptor
Until now, we have achieved scale and rotation invariance. We now need to create a
descriptor for various keypoints so as to be able to differentiate them from the other
keypoints. To generate a descriptor, we take a 16 x 16 window around the keypoint and
break it into 16 windows of size 4 x 4. This can be seen in the following figure:

Figure 7: Image showing how the descriptor is computed

We do this in order to incorporate the fact that objects in two images are rarely never
exactly the same. Hence, we try to lose some precision in our calculations. Within each 4 x 4
window, gradient magnitudes and orientations are calculated. These orientations are put in
an 8-bin histogram. Each bin represents an orientation angle of 45 degrees.

Now that we have a large area to consider, we need to take the distance of the vectors from
the keypoint into consideration. To achieve this, we use the Gaussian weighting function.

We put the 16 vectors into 8-bin histograms each, and doing this for each of the 4 x 4
windows, we get 4 * 4 * 8 = 128 numbers. Once we have all these 128 numbers, we
normalize the numbers (by dividing each by the sum of their squares). This set of 128
normalized numbers forms the feature vector.
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By the introduction of the feature vector, some unwanted dependencies arise, which are as
follows:

Rotation dependence: The feature vector uses gradient orientations. So, if we
rotate the image, our feature vector changes and the gradient orientations are also
affected. To achieve rotation independence, we subtract the keypoint's rotation
from each orientation. Thus, each gradient orientation is now relative to the
keypoint's orientation.
Illumination dependence: Illumination independence can be achieved by
thresholding large values in the feature vector. So any value greater than 0.2 is
changed to 0.2 and the resultant feature vector is normalized again. We have now
obtained an illumination independent feature vector.

That’s all that is there from the algorithm's point of view. But do we have to write code for
all that we have read in the last three pages? Absolutely not. OpenCV provides off-the-shelf
functions that can compute all of this internally without the developer having to deal with
anything.

Let's see an example code for SIFT using OpenCV:

import cv2

image = cv2.imread('image.jpg')
gray= cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
sift_obj = cv2.xfeatures2d.SIFT_create()
keypoints = sift_obj.detect(gray,None)
img=cv2.drawKeypoints(gray,keypoints,image)
cv2.imwrite('sift_keypoints.jpg',image)
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Only eight lines of code do everything that we discussed so far in this section. We first read
the image for which we want to detect SIFT features. We then create sift_obj using
cv2.xfeatures2d.SIFT_create. The point to note here is that SIFT is provided in the
opencv contrib module only. Using sift_obj, we detect keypoints in the image and
draw them on the image. The output of the preceding code is shown as follows:

Figure 8: Image with keypoints drawn over the image

Finding keypoints is only half the job done. The final aim is to be able to match keypoints in
different images. To be able to do that, we have to make slight changes to the code. The
complete code for the same is shown as follows:

import cv2
import random

image = cv2.imread('image.jpg')
image_rot = cv2.imread('image_rot.jpg')
gray= cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
gray_rot = cv2.cvtColor(image_rot,cv2.COLOR_BGR2GRAY)

sift = cv2.xfeatures2d.SIFT_create()

kp, desc = sift.detectAndCompute(gray,None)
kp_rot, desc_rot = sift.detectAndCompute(gray_rot, None)
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# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(desc,desc_rot, k=2)

# Apply ratio test
good = []
for m,n in matches:
    if m.distance < 0.4*n.distance:
    good.append([m])

# Shuffle the matched keypoints
random.shuffle(good)
# cv2.drawMatchesKnn expects list of lists as matches.
image_match =
cv2.drawMatchesKnn(image,kp,image_rot,kp_rot,good[:10],flags=2,
outImg=None)

cv2.imwrite('sift_matches.jpg',image_match)

This is very similar to the previous code; it's just that we do the same thing for two images.
After calculating keypoints for both the images, we use the brute force matcher to match the
keypoints with each other. Just for the sake of simplicity, we randomly shuffle the matched
points and pick 10 points from that to display. The following figure shows the output of the
code:

Figure 9: This shows keypoint matching between two images
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Using the matching technique, we can find out if similar objects exist in two different
images. This can be used to build simple image search applications.

Like SIFT, there is another algorithm called Speeded Up Robust features. This algorithm
tries to fill in some gaps left by SIFT and is faster. We will learn more about this in the next
chapter.

Speeded up robust features
Speeded up robust features (SURF) was proposed by Herbert Bay, Tinne Tuytelaars, and
Luc Van Gool in 2006. Some of the drawbacks of SIFT are that  it is slow and
computationally expensive. To target this problem, SURF was conceived. Apart from the
increase in speed, the other motivations behind SURF were as follows :

Fast interest point detection
Distinctive interest point description
Speeded up descriptor matching

Just like we saw in SIFT, or even ORB for that matter, SURF also aims to achieve invariance
in rotation, scale changes, illumination changes, and also any change in the viewpoint. In
the coming sections, we will look at how SURF is able to achieve all of these invariances and
at the same time be fast and efficient. We will also occasionally draw parallels between SIFT
and SURF just to appreciate the difference and how optimization actually happens.

Detecting SURF keypoints
SURF keypoints are computed using concepts similar to Haar wavelets. Just like in SIFT, we
did an approximation by using Difference of Gaussian instead of Laplacian of Gaussian. For
SURF, we will use integral images (like for Haar Cascades) to speed up the keypoint
detection step. SURF uses a technique called the fast Hessian detector that will be described
next.
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To select the location and scale of keypoints, SURF uses the determinant of the Hessian
matrix. SURF proves that Gaussian is overrated as the property that no new structures can
appear while going down to lower resolutions has only been proved in 1D, but does not
apply to the 2D case. Given SIFT's success with the log approximation, SURF further
approximates log using box filters. Box filters approximate Gaussians and can be calculated
very quickly. The following figure shows an approximation of Gaussians as box filters: 

Figure 10: Box filters used for SURF

These are similar to the ones we saw in Haar Cascades for face detection.

Due to the use of box filters and integral images, we no longer have to perform repeated
Gaussian smoothing like we did for SIFT. Instead of creating octaves by blurring and
resizing the image,  we apply box filters of different sizes directly to the integral image.
Instead of iteratively down-scaling images, we up-scale the filter size. By doing so, the scale
analysis is done using only a single image, making the algorithm faster and easy to
implement. The output of the preceding 9 x 9 filter is considered as the initial scale layer.
Other layers are obtained by filtering, using gradually bigger filters. Images of the first
octave are obtained using filters of size 9 x 9, 15 x 15, 21 x 21, and 27 x 27. At larger scales,
the step size between the filters should also scale accordingly. Hence, for each new octave,
the filter size step is doubled (that is, from 6 to 12 to 24). In the next octave, the filter sizes
are 39 x 39, 51 x 51, and so on.

In order to localize interest points in the image and over scales, a nonmaximum suppression
in the 26 pixels neighborhood is applied, which is very similar to what we did in SIFT (refer
to Figure 5). The maxima of the determinant of the Hessian matrix is then interpolated in
scale and image space using the method proposed by Brown, and others. Scale space
interpolation is especially important in our case, as the difference in scale between the first
layers of every octave is relatively large.
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After finding the keypoints in the image, we now want to generate descriptors for the
keypoints that will help us in matching keypoints between images.

SURF keypoint descriptors
Now that we have localized the keypoints, we need to create a descriptor for each, so as to
uniquely identify it from the other keypoints. SURF works on similar principles of SIFT, but
with lesser complexity. Bay and others also proposed a variation of SURF that doesn't take
rotation invariance into account, which is called U-SURF (upright SURF). In many
applications, the camera orientation remains more or less constant. Hence, we can save a lot
of computation by ignoring rotation invariance.

First, we need to fix a reproducible orientation based on the information obtained from a
circular region centered about the keypoint. Then, we construct a square region that is
rotated and aligned based on the selected orientation, and then we can extract the SURF
descriptor from it.

Orientation assignment
In order to add rotation invariance, the orientation of the keypoints must be robust and
reproducible. For this, SURF proposes calculating Haar wavelet responses in the x and y
directions. The responses are calculated in a circular neighborhood of radius 6s around the
keypoint, where s is the scale of the image (that is, the value of σ). To calculate the Haar
wavelet responses, SURF proposes using a wavelet size of 4s after obtaining the wavelet
responses and weighing them with a Gaussian kernel (σ = 2.5s) centered about the keypoint;
the responses are represented as vectors. The vectors are represented as the response
strength in the horizontal direction along the abscissa, and the response strength in the
vertical direction along the ordinate.
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All the responses within a sliding orientation window covering an angle of 60 degrees are
then summed up. The longest vector calculated is set as the direction of the descriptor:

Figure 11: The orientation assignment for SURF keypoints

The size of the sliding window is taken as a parameter, which has to be calculated
experimentally. Small window sizes result in single dominating wavelet responses,
whereas, large window sizes result in maxima in vector lengths that are not descriptive
enough. Both result in an unstable orientation of the interest region. This step is skipped for
U-SURF, as it is doesn't require rotation invariance.

Descriptor based on Haar wavelet response
For the extraction of the descriptor, the first step consists of constructing a square region
centered around the interest point and oriented along the orientation selected in the
previous section. This is not required for U-SURF. The size of the window is 20. The
following steps are taken to find the descriptors:

Split the interest region into 4 x 4 square subregions with 5 x 5 regularly spaced1.
sample points inside.
Calculate Haar wavelet responses dx and dy (dx = Haar wavelet response in x2.
direction; dy = Haar wavelet response in y direction. The filter size used is 2 s).
Weight the response with a Gaussian kernel centered at the interest point.3.
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Sum the response over each subregion for dx and dy separately, to form a feature4.
vector of length 32.
In order to bring in information about the polarity of the intensity changes,5.
extract the sum of the absolute value of the responses, which is a feature vector of
length 64.
Normalize the vector to the unit length.6.

The wavelet responses are invariant to a bias in illumination (offset). Invariance to contrast
(a scale factor) is achieved by turning the descriptor into a unit vector (normalization).

Experimentally, Bay and others tested a variation of SURF that adds some more features
(SURF-128). The sums of dx and |dx|are computed separately for dy < 0 and dy ≥ 0.
Similarly, the sums of dy and |dy| are split according to the sign of dx, thereby doubling the
number of features. This version of SURF-128 outperforms SURF.

Let's implement all of this using OpenCV and Python. The following code computes SURF
features in two images and matches the keypoints:

import cv2
import random

image = cv2.imread('image.jpg')
image_rot = cv2.imread('image_rot.jpg')
gray= cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
gray_rot = cv2.cvtColor(image_rot,cv2.COLOR_BGR2GRAY)

surf = cv2.xfeatures2d.SURF_create()

kp, desc = surf.detectAndCompute(gray,None)
kp_rot, desc_rot = surf.detectAndCompute(gray_rot, None)

# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(desc,desc_rot, k=2)

# Apply ratio test
good = []
for m,n in matches:
    if m.distance < 0.4*n.distance:
    good.append([m])

random.shuffle(good)
# cv2.drawMatchesKnn expects list of lists as matches.
image_match =
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cv2.drawMatchesKnn(image,kp,image_rot,kp_rot,good[:10],flags=2,
outImg=None)

cv2.imwrite('surf_matches.jpg',image_match)

OpenCV provides an exact same interface for both SIFT and SURF. As you can see, this
code is exactly the same as SIFT from the last section with just one change. Instead of
creating a SIFT object, we create a SURF object using cv2.xfeatures2d.SURF_create().
Apart from that, the way we match the keypoint between the images is exactly the same.

The following is the output of keypoint matching using SURF:

Figure 12: Output showing keypoint matching using SURF keypoints

These were two very famous feature-extraction algorithms. Going forward, more and more
machine learning techniques are being used to extract and match features but to be able to
fully appreciate them, it is imperative that we understand what traditional image features
look like.
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Summary
In this chapter, we first learned about different feature extraction algorithms that are useful
in different situations. We started with looking at one of the first face detection algorithms
that uses Haar Cascades. The concepts used in Haar Cascades, such as integral images and
Haar wavelets, are fundamental concepts that are used in many other algorithms such as
SURF. Going forward, we understood how SIFT and SURF work and looked at their
OpenCV implementations. 

In the next chapter, we will expand our OpenCV skills and look at how we can do video
processing in real time.



9
Video Processing Using

OpenCV
In the previous chapters, we learned how to process images. Let's take this a step further
and see how to process videos using the OpenCV library. Videos are nothing but a
sequence of images and hence dealing with videos is similar to how we dealt with images
with a few exceptions of course. Most of the algorithms that we will see in this chapter will
in the end apply on individual images of a video. There are a few algorithms in the field of
motion study that deal with pairs of images in a video; for example, optical flow. In this
chapter, we will try to understand concepts and techniques such as converting color spaces
for videos, detecting objects of a specific color, and finally tracking objects in a video.

We will cover the following topics in this chapter:

Reading/writing videos
Operations such as resizing and color space conversion of videos
Color tracking
Object tracking

Reading/writing videos
As we read earlier, videos are nothing but a sequence of images taken at very short
intervals. Doing this gives the viewer an illusion of continuity. In this section, we will write
our own piece of code to record a video using a USB camera/in-built webcam on our
laptops.
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Reading a video
Reading a video using OpenCV is really simple. You do not have to worry about different
formats (mp4, avi, and more) as OpenCV does all the heavy lifting for you. It provides
different ways to read a video. You can read a live video using your webcam or use an
external USB camera or read a saved video on your computer using an object of the
VideoCapture module. The VideoCapture() constructor takes either an integer or the
name of a file. The integer argument is the ID of the camera attached to the computer. Let's
look at how to capture a video using a webcam. A webcam has the ID 0; therefore, to read a
video from your webcam, pass 0 to VideoCapture(). All other USB cameras will have IDs
starting from 1:

import cv2

cam = cv2.VideoCapture(0)

while (cam.isOpened()):

         ret, frame = cam.read()
         cv2.imshow('frame',frame)

         if cv2.waitKey(1) & 0xFF == ord('q'):
                  break

cam.release()
cv2.destroyAllWindows()

In this code, we use the read() function, which returns a Boolean value and a frame of the
video. The Boolean value is true if the frame was read successfully; otherwise, it is false.

To read a file, look at the following code:

import cv2

cam = cv2.VideoCapture(“video.mp4”)

while (cam.isOpened()):

         ret, frame = cam.read()
         cv2.imshow('frame',frame)

         if cv2.waitKey(1) & 0xFF == ord('q'):
                  break

cam.release()
cv2.destroyAllWindows()
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The VideoCapture module provides other functionalities such as setting the start point
from where to read the video:

import cv2

cam = cv2.VideoCapture(“video.mp4”)

cam.set(cv2.CAP_PROP_POS_FRAMES, 1800) # This will set the start point to
frame 1800

while (cam.isOpened()):

         ret, frame = cam.read()
         cv2.imshow('frame',frame)

         if cv2.waitKey(1) & 0xFF == ord('q'):
                  break

cam.release()
cv2.destroyAllWindows()

Later in the chapter, we will look at how to work with images that are read using the
preceding code.

Writing a video
To save a video, OpenCV provides the VideoWriter class. Let's see how to use this class to
save a video by writing some code. For this example, we will first read images from the
default webcam in computers and then save it to a file using the VideoWriter class.

The following is the code that does the same:

import cv2

cam = cv2.VideoCapture(0)
ret, frame = cam.read()

h, w = frame.shape[:2]
fourcc = cv2.VideoWriter_fourcc(*'DIVX')
video_write = cv2.VideoWriter(saved_out.avi', fourcc, 25.0, (w, h) )

while (cam.isOpened()):

         ret, frame = cam.read()
         video_write.write(frame)
         cv2.imshow('video',frame)
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         if cv2.waitKey(1) & 0xFF == ord('q'):
                  break

cam.release()
video_write.release()
cv2.destroyAllWindows()

In this code, we first create a video_write object of the VideoWriter class and the
arguments passed to VideoWriter are the filename, fourcc, fps, and  frame size. The
fourcc is a four character code used to represent compression formats. After defining
the VideoWriter object, we read frame by frame and write each frame using the write()
function to the output file.

To read more about codes, you can follow this link: https:/ /en. wikipedia. org/wiki/
Video_codec.

Basic operations on videos
Now that we are able to read and write video files using OpenCV, let's look at different
operations that can be performed on these videos.

Converting to grayscale
Converting a video to grayscale is very easy. We have already learned how to convert an
image to grayscale in the previous chapter. We will use this knowledge to convert each
frame to grayscale. Similar to converting to grayscale, you can perform any other operation
such as edge detection/contour detection.

The following is the code for converting a video to grayscale:

import cv2

cam = cv2.VideoCapture(0)

while (cam.isOpened()):

         ret, frame = cam.read()

         gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
         cv2.imshow('gray_frame',gray_frame)
         cv2.imshow('original_frame',frame)

         if cv2.waitKey(1) & 0xFF == ord('q'):

https://en.wikipedia.org/wiki/Video_codec
https://en.wikipedia.org/wiki/Video_codec
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https://en.wikipedia.org/wiki/Video_codec
https://en.wikipedia.org/wiki/Video_codec
https://en.wikipedia.org/wiki/Video_codec
https://en.wikipedia.org/wiki/Video_codec
https://en.wikipedia.org/wiki/Video_codec
https://en.wikipedia.org/wiki/Video_codec
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                  break

cam.release()
cv2.destroyAllWindows()

Figure 1 is the output of the preceding code:

Figure 1: The image on the left shows the original frame and the image on the right is the output of the preceding code

Now it should also be easy to understand how to save a grayscale video (this is left as an
exercise for you).

Color tracking
In this section, we will try to understand how to track a color in a video using OpenCV. The
following is the code for tracking yellow color in a video:

import cv2
import numpy as np

def detect(img):

         lower_range = np.array([40,150,150], dtype = "uint8")
         upper_range = np.array([70,255,255], dtype = "uint8")

         img = cv2.inRange(img,lower_range,upper_range)
         cv2.imshow("Range",img)

         m=cv2.moments(img)
         if (m["m00"] != 0):
                  x = int(m["m10"]/m["m00"])
                  y = int(m["m01"]/m["m00"])
         else:
                  x = 0
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                  y = 0

         return (x, y)

cam = cv2.VideoCapture(0)

last_x = 0
last_y = 0

while (cam.isOpened()):

         ret, frame = cam.read()

         cur_x, cur_y = detect(frame)

         cv2.line(frame,(cur_x,cur_y),(last_x,last_y),(0,0,200),5);
         last_x = cur_x
         last_y = cur_y
         cv2.imshow('frame',frame)

         if cv2.waitKey(1) & 0xFF == ord('q'):
                  break

cam.release()
cv2.destroyAllWindows()

In this code, we read the video from the webcam frame by frame and pass the frame to
the detect() function, which finds the pixel values that lie in the range of yellow. So
lower_range defines the lower bound to the color we want to detect and upper_range
defines the upper bound. We use the inRange() function to find the pixels within the
range of pixel values defined by lower_range and upper_range. It returns a threshold
image, as shown in Figure 2, and we use that threshold image to calculate the coordinates of
the detected region:
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Figure 2: The output of the inRange() function used to find the region within the pixel value bounds

To find the coordinates, we use image moments. An image moment is defined as:

Using this, we can calculate the x and y coordinates using the following formulas:

   

So now, after calculating the coordinates, the detect() function returns the coordinate and
then we use these coordinates to draw a line using the cv2.line() function, which shows
the path of the color in the video:

Figure 3: The output of the color tracking code we saw the red color is used to track the object



Video Processing Using OpenCV

[ 161 ]

Tracking color is not always very accurate. It can perform poorly in dim or constantly
changing lighting environments. To tackle this problem, let's look at more sophisticated
methods of tracking objects that use the concept of motion to track objects.

Object tracking
In this section, we will see how to track an object in a video. The trackers available in
OpenCV  are:

KCF
Lucas Kanade Tracker
MIL
BOOSTING
MEDIANFLOW
TLD

In our code, we will use Kernelized Correlation Filter (KCF) to track an object. But you can
use any of the aforementioned trackers. There are pros and cons to each of these. From
experience, KCF works better for a general case. If you have a lot of occlusions, then you
might be better off using the TLD tracker.

Kernelized Correlation Filter (KCF)
How does KCF work? Given the initial set of points, a tracker tries to calculate the motion of
these points by looking at the direction of change in the next frame. In every consecutive
frame, we try to look for the same set of points in the neighborhood. Once the new positions
of these points are identified, we can move the bounding box over the new set of points.
There is mathematics involved in making the search faster and more efficient, which is
beyond the scope of this book:

import cv2

tracker = cv2.Tracker_create("KCF")

cam = cv2.VideoCapture(0)
for i in range(5):
    ret, frame = cam.read()

obj = cv2.selectROI("Tracking",frame)
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ok = tracker.init(frame, obj)

while True:

    ret, frame = cam.read()

    upd, obj = tracker.update(frame)
    if upd:
        x1 = (int(obj[0]), int(obj[1]))
        x2 = (int(obj[0] + obj[2]), int(obj[1] + obj[3]))
        cv2.rectangle(frame[1], x1, x2, (255,0,0))
    cv2.imshow("Track object", frame)

    k = cv2.waitKey(1) & 0xff
    if k == 27 :
        break

cam.release()
cv2.destroyAllWindows()

In the preceding code, we have used the Tracker class. Using this class, we can use any
tracking algorithm by passing it as an argument in the Tracker_create() function, which
returns an object. Then, we will first read a frame and select the object in the frame that we
need to track in the video. Selecting a region in a frame can be done by the selectROI()
function. Just click and drag over the region to select and press the space key or enter the
key as shown in Figure 4:

Figure 4: The initial frame where you can select the object you want to track
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We store the coordinates of this region in the obj variable and initialize the tracker object
with these object coordinates using the tracker.init() function. After initializing the
tracker with the object of interest, we read frame by frame and update the position of the
object in the new frame by calling the tracker.update() function, which returns the new
coordinates of the object:

Figure 5 The updated bounding box over the ball that we are trying to track

The published research paper for Kernelized Correlation Filters is
available at https:/ /arxiv. org/ pdf/ 1404. 7584. pdf.

Let's look at another tracking algorithm, Lucas Kanade Tracker.

Lucas Kanade Tracker (LK Tracker)
The LK Tracker works on the principle that the motion of objects in two consecutive images
is approximately constant relative to the given object. Unlike for the KCF Tracker, for the
LK Tracker, we will select the points to follow by extracting key points from a given image
and we will only follow these key points in the given sequence of images. The reason we do
this is--first, it makes the computation faster as we only have to worry about fewer points in
the image. Second, tracking the key points in an image is similar to tracking the entire object
because of the rigidity of the object.

https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
https://arxiv.org/pdf/1404.7584.pdf
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The following code is an implementation of the LK Tracker:

import numpy as np
import cv2

cap = cv2.VideoCapture(0)

# params for ShiTomasi corner detection
feature_params = dict( maxCorners = 1000,
 qualityLevel = 0.3,
 minDistance = 7,
 blockSize = 5,
 useHarrisDetector=1,
 k=0.04)
# Parameters for lucas kanade optical flow
lk_params = dict( winSize = (15,15),
 maxLevel = 2)

# Create some random colors
color = np.random.randint(0,255,(1000,3))

# Take first frame and find corners in it
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)

p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
# Create a mask image for drawing purposes
mask = np.zeros_like(old_frame)

count = 0 #To keep track of how many frames have been read

while(cam.isOpened()):
 ret, frame = cap.read()
 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 # calculate optical flow
 p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None,
**lk_params)
 # Select good points
 good_new = p1[st==1]
 good_old = p0[st==1]
 # draw the tracks
 for i,(new,old) in enumerate(zip(good_new,good_old)):
 a,b = new.ravel()
 c,d = old.ravel()
 mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
 frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
 img = cv2.add(frame,mask)
 cv2.imshow('frame',img)
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 k = cv2.waitKey(30) & 0xff
 if k == 27:
 break
 # Now update the previous frame and previous points
 old_gray = frame_gray.copy()
 #Recompute the goodFeaturesToTrack as the scene may have changed
drastically
 count = count + 1
 if count % 100 == 0:
 p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
 else:
 p0 = good_new.reshape(-1,1,2)
cv2.destroyAllWindows()
cap.release()

This looks like a complex piece of code but let's try to break it down. We first calculate the
feature points in the image using corner detection. We can use any other feature detection
algorithm such as SIFT or SURF. The LK Tracker is independent of the feature extraction
algorithm. Once we have the feature points ready, we can pass these points into the tracker
for tracking. Now, in the while loop, we calculate the feature points again as there is a
possibility that the scene might have changed significantly.

Summary
In this chapter, we looked at how to process videos. We started with performing basic
operations on videos such as reading/writing. Then, we looked at color space conversion.
Along the same lines, the reader can write programs to resize a video, make video with only
the edges of a video, and more. Then, we finally looked at tracking objects in a video. First
we looked at a very basic technique of tracking objects based on the color, then we looked at
more sophisticated techniques such as the Kernelized Correlation Filter and Lucas-Kanade
Tracker.

In the next chapter, we will look at how we can build a computer vision service that
provides users with the ability to apply computer vision techniques over an image by not
actually writing any code themselves. We will build a web interface that will enable users to
consume such a service.
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Computer Vision as a Service

In the recent past, there has been tremendous advancement in cloud computing, which has
led to more and more services being provided over the internet. A classic example of this is
the music industry. Earlier users had to store songs and music videos on their laptops, but
now they are able to stream the same songs over the internet. The growth in the usage of
cloud services only means that going forward it would be imperative for a developer to be
able to build services that leverage the cloud infrastructure. In this chapter, we will look at
how we can build a computer vision service that can take in an input from a user over the
internet, process the image, and send the result back to the user in no time. 

But why do we need such a service? Advancements in computer vision research has
rendered the need for more powerful computers to process images. A lot of times, an
algorithm is tweaked in a way that consumes less computational power but at the cost of
the quality of the output (we get sub-optimal results). To overcome this hurdle, what if we
are able to expose one powerful computer to a lot of users? This will have a two-fold
advantage. One where each researcher/developer would not have to spend money to buy
expensive hardware, and the second is where it will save the developers the time and effort
to implement the algorithm again.

This chapter is broadly divided into the following sections:

Architecture of the computer vision service
Environment setup
Developing a server-client model
Adding computer vision services (computer vision engine)
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Unlike other chapters, in this chapter, we will focus not only on computer vision but also on
other aspects of software development such as networking and a server-client model. Let's
begin with understanding the overview of the service that we are building.

Computer vision as a service – architecture
overview
We are trying to build a service over the internet where a user can upload a picture, select
an operation on the image that he wants to perform, and in turn will get the output from the
server. The following figure shows an overview of the service:

Figure 1: The flow of information
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In the preceding diagram, we see three boxes (the boxes are labeled clockwise starting with
the Client Webpage box). The first box is the webpage that the user will interact with. The
webpage will provide the functionality to upload an image, select an operation, and send it
to the server. From there, the image goes to the Server (over the internet), which is
represented by the second box. The server's work is to receive the image, determine what
operation to perform, and pass on that information to the Computer Vision Engine, which
is shown in the third box. The Computer Vision Engine performs the operation selected by
the user on the image and returns the new image back to the Server (second box). The
server then sends the image back to the Client Webpage (first box) and the image gets
displayed on the webpage. Throughout this chapter, we will implement each of the the
three boxes and in the end have a complete end-to-end system.

Let's set up our environment first before we actually start implementing.

Environment setup
As we saw in the previous section, there are three main parts of the service that we are
building. To implement each of them, we need to install tools and libraries other than just
OpenCV or scikit-image. The following is the list of libraries that we will be installing, with
a brief explanation of why we need them:

http-server: This will serve the web files for the client
virtualenv: This will help in isolating your environment from other libraries on
your computer
flask: This will help you to build a server (second box, clockwise in Figure 1)
flask-cors: This will help you to allow cross-origin requests to the server

http-server
This tool will start an http-server that will serve all the HTML, CSS, and Javascript files
that we will build going forward in the chapter. To install, run the following command:

$: npm install http-server -g
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virtualenv
The virtualenv is a tool that helps you to isolate your Python environment from other
libraries or different versions installed on your computer. We will set up our own virtual
environment for this chapter. The following command installs virtualenv on your
computer:

$: pip3 install virtualenv

Once we have installed virtualenv, we can start making the folder structure for our
service. Make a parent folder named CVaaS using mkdir. Once the folder is created, run the
following command:

$: virtualenv -p python3 CVaaS

This will create a virtual environment in the CVaaS folder.

flask
Once we have the virtual environment setup, we will install flask within that
environment.

Go to the CVaaS folder that we created in the last section. Inside the folder, run the
following commands:

$: source bin/activate
$: pip3 install flask
$: pip3 install flask-cors

The first command will activate the virtual environment. Everything that you do going
forward will stay within this folder. The next two commands will install flask and flask-
cors. To test whether flask was installed properly, run the following commands. If it does
not return any errors, the installation was successful:

$: python3 -c 'import flask'
$: python3 -c 'from flask_cors import CORS,
cross_origin'

We will use flask to build our RESTFUL APIs that will help the client to talk to the server.
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After installing flask and flask-cors, let's create two more directories, one for the client-
side code and one for the server-side code:

$: mkdir Client
$: mkdir Server

The final structure should look something like this, where the bin, include and lib folders
were created by the virtualenv command, the flask folder was created after we installed
flask, and the other folders were created by us:

.
├── Client
├── Server
├── bin
├── flask
├── include
├── lib
└── pip-selfcheck.json

Developing a server-client model
In this section, we will implement the server-side and client-side code and towards the end
of the section bring them together. We will leave the computer vision engine as a
placeholder and add it in the next section.

Let's begin with writing the client-side code.

Client
The purpose of the client-side code is to provide an interface for the user to upload an
image and select an operation. To build this, we will use JavaScript and HTML. To get
started, we will make two files, index.html and index.js, in the Client folder that we
created earlier:

<html>
    <head>
        <script src="index.js"></script>
        <script
src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.0/jquery.min.js"></sc
ript>
    </head>
    <body>
        <!-- Create upload image function -->
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        <input id="img_src" type="file"/>
        <input id = "load_img_btn" type="button" onclick="loadImage()"
value="Load"/>
        <!-- Drop down menu to select image processing operation -->
        <select id="image_op">
            <option value="to_grayscale">Convert to Grayscale</option>
            <option value="get_edge_canny">Get Edges (Canny)</option>
            <option value="get_corners">Get Corners</option>
        </select>
        <input type="button" id="process_img" value="Process Image"
onclick="processImage()"/>
        </br>
        </br>
        <!-- This canvas is for the original image -->
        <canvas id="local_canvas"></canvas>
        <!-- This is for the processes image -->
        <canvas id='processed_canvas' src=""></canvas>
    </body>
</html>

Let's break down the code. We first include the index.js and jquery file. We will need
the jquery file to send and receive data from the server. In the body of the webpage, there
are two major parts. First is the top row where the user has the option to select a file from
the computer and load it onto the webpage. To load the image, we provide a Load button
next to the file selection option. Next we have a drop-down menu, which lists down all the
available operations. Finally, we have the Process Image button, which sends the loaded
image to the server and waits for a response from the server with the processed image. The
following is a screenshot of this part of the webpage:

Figure 2: Screenshot of the top part of the webpage

In the next row of the webpage, we have two canvas elements. The first canvas element
with the local_canvas ID is used to load the image that the user has selected from the
computer. The other canvas with the processed_canvas ID is used to show the image that
was sent back by the server.
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For the two buttons that we have put in our webpage, we have called two function
names—loadImage() and processImage(), which are triggered when the buttons are
clicked. These functions are implemented in the index.js file that is shown next. In your
index.js file, copy the code given here:

var fr; // Variable to store the file reader
var is_img_ready = false;

//Function to load the image from local path to img and canvas
function loadImage() {
    img_src = document.getElementById('img_src');
    if(!img_src.files[0]) {
        alert('Please select an Image first!')
        return;
    }
    fr = new FileReader();
    fr.onload = updateImage;
    fr.readAsDataURL(img_src.files[0])
}

function updateImage() {
    img = new Image();

    img.onload = function() {
        var canvas = document.getElementById("local_canvas")
        canvas.width = img.width;
        canvas.height = img.height;
        var ctx = canvas.getContext("2d");
        ctx.drawImage(img,0,0);
    };
    img.src = fr.result;
    is_img_ready = true;
}

function loadProcessedImage(data) {
    img = new Image();

    img.onload = function() {
        var processedCanvas = document.getElementById('processed_canvas');
        var localCanvas = document.getElementById('local_canvas');
        processedCanvas.width = localCanvas.width;
        processedCanvas.height = localCanvas.height;
        ctx = processedCanvas.getContext('2d');
        ctx.drawImage(img, 0, 0);
    };
    console.log(data);
    img.src = 'data:image/jpeg;base64,' + data;
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}

function processImage() {
    if (is_img_ready == false) {
        alert('No image to process!');
        return;
    }

    //Send the image to the server and wait for a response
    canvas = document.getElementById('local_canvas');
    image_data = canvas.toDataURL('image/jpeg');
    img_op = document.getElementById('image_op');
    op = img_op.options[img_op.selectedIndex].value;

    $.ajax({
        url:"http://localhost:5000/process_image",
        method: "POST",
        contentType: 'application/json',
        crossDomain: true,
        data: JSON.stringify({
            image_data: image_data,
            msg: 'This is image data',
            operation: op
        }),
        success: function(data){
            loadProcessedImage(data['image_data']);
        },
        error: function(err) {
            console.log(err)
        }
    });
}

That looks like a lot of code. Let's break it down and understand what it does. We first
declare two global variables; one is to store the FileReader object that we will use later in
the code and the other variable is_img_ready, which is used to keep a check whether the
image has been loaded by the user. This is used as a gatekeeper for the process image
functionality. We do not want to send an empty image to the server for processing.
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After that, the first function that we see is loadImage(). The work of this function is to get
the file path set by the user and load the image from that path to the canvas
(local_canvas ID ). We use the FileReader object to get the file from the local filesystem
of the user. In the same function, when the FileReader object is completed loading the
image, we call the updateImage function. This is a helper function for the loadImage()
function. We need to create a helper function because updating the canvas is an async task,
which means we need to wait for the FileReader object to get the entire image from the
filesystem and only then can we update the canvas. The updateImage function is where we
actually update the canvas.

The next function that we will look at is the processImage() function. This function is
responsible for sending the image to the server. Sending an image to the server is not trivial.
We first convert the image to base64 encoding and send that encoded image over the
network. Then, after receiving the image, the server selects the image and uses it.
image_data = canvas.toDataURL('image/jpeg'); is the line that returns the image
in base64 encoding. From the select tag, we extract the selected operation. Once we have
the encoded image and the operation, we send the data over to the server using an AJAX
POST request. We form the AJAX request by passing the url, method, contentType, and
the actual data. The following is the snippet showing the AJAX request to the server. It is
very important to follow the correct naming conventions between the client and the server
while exchanging data. If the names are not consistent, nothing will work correctly:

$.ajax({
    url:"http://localhost:5000/process_image",
    method: "POST",
    contentType: 'application/json',
    crossDomain: true,
    data: JSON.stringify({
        image_data: image_data,
        msg: 'This is image data',
        operation: op
    }),
    success: function(data){
        loadProcessedImage(data);
    },
    error: function(err) {
        console.log(err)
    }
});
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Writing a correct ajax request is very important. The first thing we pass is the url of the
server we are trying to hit. As you will see in the next
section, http://localhost:5000/process_image is the URL of the REST API that we
will develop for our server. Next up, we set the method to "POST" (you will read more
about this in the next section). Further, we set the contentType and crossDomain
parameter values. It is important to set the crossDomain value to true; otherwise, you will
not be able to hit the server's REST API because of the CORS security constraint. Finally, we
write two callback functions for success and error. The success callback function
receives the processed image from the server. In that function, we call the
loadProcessedImage() function, which takes the image sent from the server and displays
it on the second canvas (processed_canvas ID).

The following is the image of the entire webpage that you just built:

Figure3: The image to the left is the original image loaded by the user, while the image to the right is the one returned by the server

That is all for the client-side code. You can make the webpage look as fancy as you want,
but for the purpose of this book, we will keep the webpage to the bare minimum when it
comes to aesthetics.

Next is to get the server up and running.
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Server
The server in our service is responsible for taking the image from the web client that we
built in the previous section and passing it onto the computer vision engine (that we will
build in the upcoming section). The computer vision engine will return the processed image
back to the server and the server will then send the image back to the client. So to get this
functionality working, we need to provide the client with a URL that it can use to send the
image and the operation. The most common way of achieving this is through a REST API.

A little about REST APIs! These are HTTP endpoints that are exposed by an http-server
as a way to contact the server. For example, say our http-server is running with the
address http://www.cvaas.com (this is a hypothetical address and does not exist in real
life), then we can build a REST API on that server with an address
http://www.cvaas.com/process_image. What this means is that whenever a client hits
this URL, we will perform the task of processing the image. Say, we build another REST
API with an address http://www.cvaas.com/is_server_running. Whenever a client
hits this URL, we will return irrespective of whether the server is running or not. The
advantage of using REST APIs is that we can expose multiple functionalities from a server
without affecting each other. This makes the architecture clean and easy to manage. In the
AJAX request that we saw in the last section, the URL that was provided in the request was
nothing but the REST API exposed by the server that we are going to build in this section.

It is now time for us to implement our own REST API using flask. The flask is a micro
framework for building web applications using Python.

First, make an app.py file in the Server folder that we created at the beginning of the
chapter. But before writing the final sever, let's write a sample server just to understand
how flask works. The following is the sample code for a simple 'Hello World' server:

from flask import Flask
from flask_cors import CORS

app = Flask('CVaaS')
CORS(app)

@app.route('/')
def index():
    return 'Hello World'

if __name__ == '__main__':
    app.run(debug=True)
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Let's break down the code and understand what each function does. To begin with, we first
import Flask and create a flask app using app = Flask('CVaaS') and name it
'CVaaS'. The name of the application is not important for this example, but it is always
good to have meaningful names. In the next line, allow cross-origin requests
using CORS(app). It is very important to set CORS, because you will not be able to hit the
REST API from webpage that is hosted on a different server. If your http-server and the
flask server are hosted within the same URL, setting CORS is not required. Once we have
the flask application running, to test our server, we create a dummy index() function.
Inside this function, we just return an 'Hello World' string. If you take a look at it
 closely, we have a decorator before the index() function @app.route('/'). This is the
most important part of our server. What this line does is that it tells the flask app to execute
the index() function whenever someone hits a '/' from a webpage. 

To start the server, run the following command in the Terminal:

$: python3 app.py

You should see something like this:

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 206-325-114

This means that the Flask server is running successfully on port 5000. To test the server,
 open your favourite web browser and type http://localhost:5000/. You will see
Hello World displayed on your browser. This means everything is working fine. Just to
play around with this, in the decorator, change / to /test and
hit http://localhost:5000/test from your web browser and see the output. You
should see the same output that is 'Hello World'.

Let's go ahead and build the complete server. The following is the code for the complete
server. Copy this code in the app.py file that we created at the beginning of the chapter:

from flask import Flask, request
from flask_cors import CORS, cross_origin
import base64
import cv2
import numpy as np

app = Flask('CVaaS')
CORS(app)

def cv_engine(img, operation):
    if operation == 'to_grayscale':
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        return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return None

def read_image(image_data):
    image_data = base64.decodebytes(image_data)
    with open('temp_image.jpg', 'wb') as f:
        f.write(image_data)
        f.close()
    img = cv2.imread('temp_image.jpg')
    return img

def encode_image(img):
    ret, data = cv2.imencode('.jpg', img)
    return base64.b64encode(data)

# This is the server to handle requests and get images from client
@app.route('/process_image', methods=['POST'])
def process_image():
    if not request.json:
        return 'Server Error!', 500
    header_len = len('data:image/jpeg;base64,')
    image_data = request.json['image_data'][header_len:].encode()
    operation = request.json['operation']
    img = read_image(image_data)
    img_out = cv_engine(img, operation)
    image_data = encode_image(img_out)
    result = {'image_data': image_data, 'msg':'Operation Completed'}
    return result, 200

@app.route('/')
def index():
    return 'Hello World'

if __name__ == '__main__':
    app.run(debug=True)

The overall structure of the code stays the same; in the preceding code, we add new REST
endpoints. As previously mentioned, REST APIs make it easier to add or remove REST
APIs without having to change much in the overall structure of your code.
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In the preceding code, we make a new function process_image() and
set @app.route('/process_image', methods=['POST']) as its decorator. The
decorator for this function specifies the URL, which is /process_image along with the
method for the HTTP request. There are different methods that are used by HTTP. We
choose POST for this example since we want to send large amounts of data (images) over
the network. The GET method is useful when the amount of data that we want to transfer is
not a lot. Once we have handled the logistics of the REST API, let's look at the actual
implementation of the API. Inside the function, we first check whether the request that was
sent by the client contains valid JSON data. We are designing the server to work over JSON
data. The reader is free to use any other standard for exchanging data between the server
and the client. After that we extract the image data and operation to perform from the JSON
request. After extracting the image data from the request, we send the data to the
read_image() function. Remember we had encoded the image to base64 before sending
it? Now we have to decode the image back. The read_image() function does exactly that.
It takes in the data and decodes the data using image_data =
base64.decodebytes(image_data). After decoding the image, it creates a temporary
image on the computer and reads it back using OpenCV so that we are able to use the
OpenCV API to perform whatever operation we wish to. Once the read_image has
successfully created an OpenCV image, it returns that to the process_image() function
from where it was originally called. The process_image() function calls the
cv_engine() function and passes the image and the operation that was requested from the
client. We will look into this function later in the section. Assuming that the cv_engine()
function returns the processed image, our job now is to send the processed image back to
the client. We take the processed image and convert it to base64 encoding using the
encode_image() function. Finally, we create a JSON object with the encoded image and a
success message, and send it to the client using the return result, 200 line. 200 is the
response code for a successful HTTP request. 

To run the server, run the following command:

$: python3 app.py

This concludes the flask server needed to build our computer vision service. But we still
have to write the computer vision engine that actually performs all the image manipulation
and processing.
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Computer vision engine
This is the final piece of the puzzle! In the last section, we briefly touched upon the
computer vision engine and how it was being called using the cv_engine() function. In
this section, we will look inside this function. For the sake of simplicity, in the last section,
the cv_engine() function was capable of performing only one operation, which is to
convert the image to a grayscale image. Let's add support for more operations for our
service in this function.

First, we will add the capability to compute canny edges in images. The following is the
code for this:

def cv_engine(img, operation):
    if operation == 'to_grayscale':
        return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    elif operation == 'get_edge_canny':
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        canny_edges = cv2.Canny(gray, 100, 200, 3)
        return canny_edges
    else:
        return None

Again, we keep the structure of the code the same and only add a new if condition that
checks whether the operation passed by the client is 'get_edge_canny'. An important
thing to note here is that the name of the operation set in the HTML file that we created
earlier should match with the operation that we are checking for in the cv_engine()
function. Just to recall, the following is the code snippet where we had set the operation
name:

<!-- Drop down menu to select image processing operation -->
<select id="image_op">
    <option value="to_grayscale">Convert to Grayscale</option>
    <option value="get_edge_canny">Get Edges (Canny)</option>
    <option value="get_corners">Get Corners</option>
</select>

Let's try to add a new operation, and compute Sobel edges. There are two places where we
need to make changes. The first place is the HTML file for the client. We will add a new
option tag in the preceding code snippet as follows:

<option value="get_edge_sobel">Get Edges (Sobel)</option>
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The second place is where we have to add the cv_engine() function in the server code.
We will add a new elif condition in the code. The addition will be as follows:

elif operation == 'get_edge_sobel':
    gray = cv2.cvtColor(cv2.COLOR_BGR2GRAY)
    x_edges = cv2.Sobel(gray, -1, 1, 0, ksize = 5)
    y_edges = cv2.Sobel(gray, -1, 0, 1, ksize = 5)
    edges = cv2.addWeighted(x_edges, 0.5, y_edges, 0.5, 0)
    return edges

By adding the preceding code, we have added Sobel edge detection capability.

The following is the output for the canny operation working end to end:

Figure 4: Example of a working canny edge detection

We can add as many computer vision capabilities as we want. We just have to add more
conditions in the cv_engine() function and also to the HTML file. The modular structure
of the code helps in adding and removing functions without disturbing any other function
of the service. This is an important quality of a cloud-based service as it keeps the downtime
of the service due to a buggy code minimum.

Let's implement a more complicated operation such as detecting corners. The overall
structure of the code stays the same. We will add a new elif statement in the
cv_engine() function and within the elif statement we will add the following lines of
code. This code is similar to the code for Harris Corner that we saw earlier in Chapter
3, Drilling Deeper into Features - Object Detection, with one change towards the end.
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After computing the corner pixels in the image, we plot the corner pixels over the image,
unlike in Chapter 3, Drilling Deeper into Features-  Object Detection,  where we used
matplotlib to superimpose corner pixels on the image while showing the image. We
cannot do that here because we want to send all the information along with the image. So,
we draw the corner points over the image:

#Compute the Harris corners in the image. This returns a corner measure
response for each pixel in the image
corners = corner_harris(image)

#Using the corner response image we calculate the actual corners in the
image
coords = corner_peaks(corners, min_distance=5)

# This function decides if the corner point is an edge point or an isolated
peak
coords_subpix = corner_subpix(image, coords, window_size=13)
image_corner = np.copy(image)

for corner in coords_subpix:
    if math.isnan(corner[0]) or math.isnan(corner[1]):
        continue
    corner = [int(x) for x in corner]
    rr, cc = circle(corner[0], corner[1], 5)
    image_corner[rr, cc] = 255 # Mark this point in the image with white
color!

print(image)
image = image * 255 + image_corner

return image

Another important line to notice here is image = image * 255 + image_corner. We
multiple the image with 255 because we want to change the scale of the image from 0 to 1,
to 0 to 255. After that we add the image_corner image, where we drew the corner points.
And finally, we send this image back to the client, which has all the corner points marked in
white.

The special thing in this example is that the result of the operation is additional data along
with the image. We have the original image and then coordinates for the corners, which are
not part of the image. Since we are only sending an image back to the client, we have to put
all the information within the image. There are other examples of operations such as
computing ORB features where we will have to do the same thing.
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Another way of handling extra data along with the image is to also send that data back to
the client. But this will increase the burden on the client and you will have to write different
code to handle different outputs. Sending the information within the image is the easiest
and the cleanest solution.

A point to note here is that we are implementing everything in just one function, but this is
not advisable when the number of operations keep increasing. Once you realize that this
function is getting burdened with a lot of work, it is time to make additional functions that
take care of each operation and call those functions within the cv_engine() function.

Putting it all together
At this point, we have all the three components ready—the client web page, the flask server,
and the computer vision engine. Let's see how they work together and take a look at the
bigger picture. We will follow these steps to get everything up and running.

Client
Go to the client folder where we created the index.html and index.js files. In that folder,
using the Terminal, run the following command:

$: http-server .

Don't forget the dot—this means to run the server using the files in the current folder. If you
want to run the server from a different location, you can pass the appropriate path after
http-server. The http-server will start on your localhost using port 8080. To test the
server, open your favorite browser and hit http://localhost:8080/. You should see a
page similar to Figure 1.
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Server
Go to the Server folder that we created earlier in the chapter. It should have just one file,
app.js.

To run the Flask server, run the following command using the Terminal:

$: python3 app.py

Once you run that, you will see that the server is running again on localhost but on a
different port (by default, it is 5000). If you see no errors, it means that the server is running
fine.

We have everything running now. You can go to the web page and start playing around
with the page that you just built.

Summary
In this chapter, we looked at a very different topic than what we have seen so far in the
book. We understood how it is possible to build a service over the internet that can provide
computer vision capabilities to users who do not want to write their own code or just want
to perform a computation only once (maybe for a research activity).  We broke down the
entire service into three major parts, the web client, a Flask server, and finally, the computer
vision engine. Then, we tackled each part separately by implementing in a way that they
have minimum dependencies with each other. Once all the parts were implemented, we
brought them all together and because of the way the code was structured, bringing all of
them together took no time.

In the coming years, as the cloud infrastructure gets more advanced, we will see more and
more such services being provided to users and this chapter will help you get started with
how such applications are built. 



Index

C
canny edge detector
   about  43
   gradient, finding  43
   nonmaximal suppression  44
   smoothing  43
   thresholding  44
Client Webpage  168
client-side  170
color spaces
   Grayscale  13
   Hue, Saturation, Value (HSV)  14
   Red, Green, Blue (RGB)  14
color tracking  158
computer vision engine  168, 180
computer vision
   as service  167
   client  183
   server  184
contour detection  70
convolution  30, 31, 32
convolution layer  106
Convolutional neural networks (CNNs)  105, 106,

108

custom filters  39

D
data preprocessing
   about  82
   image rotation  82
   image translation, through random cropping  82
   scaling  82
Difference of Gaussian (DoG)  138
dilation  36, 37, 38

E
edge detection, image
   canny edge detector  126
   sobel edge detection  124
edge detection
   about  41
   canny edge detector  43
   Hough circle  47
   Hough line  46
   sobel edge detector  41
environment setup
   about  168
   flask  169
   http-server  168
   virtualenv  169
erosion  36, 37

F
filters, image
   Gaussian blur  121
   Median blur  121
Fully connected layers  106

G
Gaussian blur  33, 34, 35, 121
geometrical transformation
   resize  16
   rotate  17

H
Haar Cascades
   about  131
   integral images  132
Harris corner detection  52
   about  51
   corner_harris  52



[ 186 ]

   corner_peaks  53
   corner_subpix  53
Hessian matrix  141
Hough circle  47
Hough line  46

I
image derivatives
   about  28
   kernels  30
image features
   revisiting  50
image filters
   about  32
   custom filters  39
   dilation  36
   erosion  36
   Gaussian blur  33, 34, 35
   image thresholding  40
   median filter  35
image processing libraries
   about  10
   pillow  10
image processing
   about  8
   medicine  8
   security image processing  9
   social media  9
image stitching  63, 65, 67
image thresholding  40
image
   color space, changing  113
   contour detection  126
   cropping  115
   edge detection  124
   filters  119
   morphological operations  122
   reading  112
   rotation  117
   saving  113
   scaling  114
   template matching  128
   thresholding  118
   translation  116
   writing  113

integral image  132

K
K-means clustering  95, 96
Kernelized Correlation Filter (KCF)
   about  161
   reference link  163
kernels  30
keypoint descriptor
   about  143
   illumination dependence  144
   rotation dependence  144
Kullback Leibler Divergence  56

L
LeNet  105
Local Binary Pattern (LBP)  49, 54, 56
logistic regression  85, 86, 89
Lucas Kanade Tracker (LK Tracker)  163

M
machine learning
   about  81
   applications, for computer vision  83
   challenges  109
   classification  84
   data preprocessing  82
   handwriting recognition  84
   image detection  84
   scene labeling  84
   Scikit-learn (sklearn)  83
   self driving cars  85
macOS  111
median filter  35
Morphological operations  36
morphological operations, image
   dilation  123
   erosion  122

N
neural network
   about  99
   design  99, 101
   hidden layers, playing  104



   MNIST digit classification, used  102, 104
   training  101
normalized graph cut  76, 78

O
object tracking
   about  161
   Kernelized Correlation Filter (KCF)  161
   Lucas Kanade Tracker (LK Tracker)  163
OpenCV APIs
   about  112
   image, reading  112
OpenCV trunk
   reference link  133
OpenCV
   installing  110
   installing, on Linux  112
   installing, on macOS  111
   installing, on Windows  111
Oriented FAST and Rotated BRIEF (ORB)
   about  57
   correlation  60
   FAST detector  57
   FAST keypoint orientation  57
   orientation, by intensity centroid  58
   Rotation-aware BRIEF  58
   Steered BRIEF  59
   variance  60

P
pillow
   about  10, 11
   color spaces, changing  13, 15, 16
   geometrical transformation  16
   image enhancement  17, 18, 19
   image, cropping  12
   image, reading  11
   image, saving  12
   image, writing  12
   installation  10, 11
Python Imaging Library (PIL)  10

R

Radio Frequency Identification (RFID)  9
Region of Interest (ROI)  12, 134

S
Scale Invariant Feature Transformation (SIFT)
   about  135
   algorithm  135
   keypoint descriptor  143
   keypoint localisation  139
   orientation assignment  141
   Scale-space extrema detection  136
scikit-image
   about  19, 20, 21, 22, 23, 24, 25, 26
   installation  20
Scikit-learn (sklearn)
   Linux/macOS  83
   Windows  83
server-client model
   client-side  170
   developing  170
   server-side  176
sobel edge detector
   about  41
   pixels, with large gradient values  42
Speeded up robust features (SURF)
   about  147
   descriptor based, on Haar wavelet response 

150, 151
   keypoint descriptors  149
   keypoints, detecting  147, 148, 149
   orientation assignment  149, 150
subsampling  106
superpixels  74
support vector machines  89, 90, 92, 93, 94

V
videos
   basic operations  157
   grayscale, converting  157
   reading  154, 155
   writing  154, 156

W
watershed algorithm  72


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Image Processing
	Image processing - its applications
	Image processing libraries
	Pillow
	Installation
	Getting started with pillow
	Reading an image
	Writing or saving an image
	Cropping an image
	Changing between color spaces
	Geometrical transformation
	Image enhancement


	Introduction to scikit-image
	Installation
	Getting started with scikit-image


	Summary

	Chapter 2: Filters and Features
	Image derivatives
	Kernels

	Convolution
	Understanding image filters
	Gaussian blur
	Median filter
	Dilation and erosion
	Erosion
	Dilation

	Custom filters
	Image thresholding

	Edge detection
	Sobel edge detector
	Why have pixels with large gradient values?

	Canny edge detector
	Hough line
	Hough circle

	Summary

	Chapter 3: Drilling Deeper into Features - Object Detection
	Revisiting image features
	Harris corner detection
	Local Binary Patterns
	Oriented FAST and Rotated BRIEF (ORB)
	oFAST – FAST keypoint orientation
	FAST detector
	Orientation by intensity centroid
	rBRIEF – Rotation-aware BRIEF
	Steered BRIEF
	Variance and correlation

	Image stitching
	Summary

	Chapter 4: Segmentation - Understanding Images Better
	Introduction to segmentation
	Contour detection
	The Watershed algorithm
	Superpixels
	Normalized graph cut
	Summary

	Chapter 5: Integrating Machine Learning with Computer Vision
	Introduction to machine learning
	Data preprocessing
	Image translation through random cropping
	Image rotation and scaling

	Scikit-learn &#160;(sklearn)

	Applications of machine learning for computer vision
	Logistic regression
	Support vector machines
	K-means clustering
	Summary

	Chapter 6: Image Classification Using Neural Networks
	Introduction to neural networks
	Design of a basic neural network
	Training a network
	MNIST digit classification using neural networks
	Playing with hidden layers

	Convolutional neural networks
	Challenges in machine learning
	Summary

	Chapter 7: Introduction to Computer Vision using OpenCV
	Installation
	macOS
	Windows
	Linux

	OpenCV APIs
	Reading an image
	Writing/saving the image
	Changing the color space
	Scaling
	Cropping the image
	Translation
	Rotation
	Thresholding
	Filters
	Gaussian blur
	Median blur

	Morphological operations
	Erosion
	Dilation

	Edge detection
	Sobel edge detection
	Canny edge detector

	Contour detection
	Template matching


	Summary

	Chapter 8: Object Detection Using OpenCV
	Haar Cascades
	Integral images

	Scale Invariant Feature Transformation (SIFT)
	Algorithm behind SIFT
	Scale-space extrema detection
	Keypoint localization
	Orientation assignment
	Keypoint descriptor


	Speeded up robust features
	Detecting SURF keypoints
	SURF keypoint descriptors
	Orientation assignment
	Descriptor based on Haar wavelet response


	Summary

	Chapter 9: Video Processing Using OpenCV
	Reading/writing videos
	Reading a video
	Writing a video

	Basic operations on videos
	Converting to grayscale

	Color tracking
	Object tracking
	Kernelized Correlation Filter (KCF)
	Lucas Kanade Tracker (LK Tracker)

	Summary

	Chapter 10: Computer Vision as a Service
	Computer vision as a service – architecture overview
	Environment setup
	http-server
	virtualenv
	flask

	Developing a server-client model
	Client
	Server

	Computer vision engine
	Putting it all together
	Client
	Server

	Summary

	Index

